首页> 外文OA文献 >Automatic Speech Recognition Errors Detection Using Supervised Learning Techniques
【2h】

Automatic Speech Recognition Errors Detection Using Supervised Learning Techniques

机译:利用监督学习技术检测自动语音识别错误

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the last years, many advances have been made in the field of Automatic Speech Recognition (ASR). However, the persistent presence of ASR errors is limiting the widespread adoption of speech technology in real life applications. This motivates the attempts to find alternative techniques to automatically detect and correct ASR errors, which can be very effective and especially when the user does not have access to tune the features, the models or the decoder of the ASR system or when the transcription serves as input to downstream systems like machine translation, information retrieval, and question answering. In this paper, we present an ASR errors detection system targeted towards substitution and insertion errors. The proposed system is based on supervised learning techniques and uses input features deducted only from the ASR output words and hence should be usable with any ASR system. Applying this system on TV program transcription data leads to identify 40.30% of the recognition errors generated by the ASR system.
机译:在过去的几年中,自动语音识别(ASR)领域取得了许多进步。但是,ASR错误的持续存在限制了语音技术在现实生活中的广泛应用。这激发了人们寻找替代技术以自动检测和纠正ASR错误的尝试,这可能非常有效,尤其是在用户无权调整ASR系统的功能,模型或解码器或转录作为替代的情况下。输入到下游系统,例如机器翻译,信息检索和问题解答。在本文中,我们提出了一种针对替换和插入错误的ASR错误检测系统。所提出的系统基于监督学习技术,并且使用仅从ASR输出词中扣除的输入特征,因此应可用于任何ASR系统。将此系统应用于电视节目转录数据可识别出ASR系统产生的识别错误的40.30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号