Quantum cascade lasers (QCLs) are compact sources of coherent terahertz radiation. Although all existing QCLs use III-V compound semiconductors, silicon-based devices are highly desirable due to the high thermal conductivity and mature processing technology. We use a semiclassical rate-equation model to show that Ge/SiGe THz QCL active region gain is strongly enhanced by reducing the electron temperature. We present a bound-to-continuum QCL design employing L-valley intersubband transitions, using high Ge fraction barriers to reduce interface roughness scattering, and a low electric field to reduce the electron temperature. We predict a gain of similar to 50 cm(-1), which exceeds the calculated waveguide losses. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3237177]
展开▼