首页> 外文OA文献 >Near-optimal pilot allocation in sparse channel estimation for massive MIMO OFDM systems
【2h】

Near-optimal pilot allocation in sparse channel estimation for massive MIMO OFDM systems

机译:用于大规模mImO OFDm系统的稀疏信道估计中的近似最优导频分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inspired by the success in sparse signal recovery, compressive sensing has already been applied for the pilot-based channel estimation in massive multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. However, little attention has been paid to the pilot design in the massive MIMO system. To obtain the near-optimal pilot placement, two efficient schemes based on the block coherence (BC) of the measurement matrix are introduced. The first scheme searches the pilot pattern with the minimum BC value through the simultaneous perturbation stochastic approximation (SPSA) method. The second scheme combines the BC with probability model and then utilizes the cross-entropy optimization (CEO) method to solve the pilot allocation problem. Simulation results show that both of the methods outperform the equispaced search method, exhausted search method and random search method in terms of mean square error (MSE) of the channel estimate. Moreover, it is demonstrated that SPSA converges much faster than the other methods thus are more efficient, while CEO could provide more accurate channel estimation performance.
机译:受稀疏信号恢复成功的启发,压缩感测已被用于大规模多输入多输出(MIMO)正交频分复用(OFDM)系统中基于导频的信道估计。但是,在大规模MIMO系统中,对导频设计的关注很少。为了获得接近最佳的导频放置,介绍了两种基于测量矩阵的块相干性(BC)的有效方案。第一种方案通过同时扰动随机逼近(SPSA)方法搜索具有最小BC值的导频模式。第二种方案将BC与概率模型结合在一起,然后利用交叉熵优化(CEO)方法解决飞行员分配问题。仿真结果表明,两种方法在信道估计的均方误差(MSE)方面均优于等距搜索,穷举搜索和随机搜索。而且,证明了SPSA的收敛速度比其他方法快得多,因此效率更高,而CEO可以提供更准确的信道估计性能。

著录项

  • 作者

    Nan Y; Sun X; Zhang L;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号