首页> 外文OA文献 >Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces
【2h】

Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces

机译:小型和大型氧煤炉中辐射传热的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting thermal radiation for oxy-coal combustion highlights the importance of the radiation models for the spectral properties of gases and particles. This study numerically investigates radiation behaviours in small and large scale furnaces through refined radiative property models, using the full-spectrum correlated k (FSCK) model and Mie theory based data, compared with the conventional use of the weighted sum of grey gases (WSGG) model and the constant values of the particle radiation properties. Both oxy-coal combustion and air-fired combustion have been investigated numerically and compared with combustion plant experimental data. Reasonable agreements are obtained between the predicted results and the measured data. Employing the refined radiative property models achieves closer predicted heat transfer properties to the measured data from both furnaces. The gas-phase component of the radiation energy source term obtained from the FSCK property model is higher within the flame region than the values obtained by using the conventional methods. The impact of using non-grey radiation behaviour of gases through the FSCK is enhanced in the large scale furnace as the predicted gas radiation source term is approximately 2-3 times that obtained when using the WSGG, while the same term is in much closer agreement between the FSCK and the WSGG for the pilot-scale furnace. The predicted total radiation source term (from both gases and particles) is lower in the flame region after using the refined models, which results in a hotter flame (approximately 50-150 K higher in this study) compared with results obtained from conventional methods. In addition, the predicted surface incident radiation reduces by using the refined radiative property models for both furnaces, in which the difference is relevant with the difference in the predicted radiation properties between the two modelling techniques. Numerical uncertainties resulting from the influences of combustion model, turbulent particle dispersion and turbulence modelling on the radiation behaviours are discussed.
机译:预测氧煤燃烧的热辐射凸显了辐射模型对于气体和颗粒的光谱特性的重要性。本研究使用全光谱相关k(FSCK)模型和基于Mie理论的数据,通过灰化气体加权总和(WSGG)的常规使用,通过精细的辐射特性模型,通过精简的辐射特性模型,对小型和大型熔炉中的辐射行为进行了数值研究。模型和粒子辐射特性的常数值。氧煤燃烧和空气燃烧均已进行了数值研究,并与燃烧厂的实验数据进行了比较。在预测结果和测量数据之间取得了合理的一致。采用改进的辐射特性模型可以实现与两个炉子的测量数据更接近的预测传热特性。从FSCK特性模型获得的辐射能量项的气相成分在火焰区域内比使用常规方法获得的值高。在大型熔炉中,使用通过FSCK的气体的非灰色辐射行为的影响会增强,因为预测的气体辐射源项约为使用WSGG时的2-3倍,而同一术语则更为一致在中型炉的FSCK和WSGG之间。在使用精炼模型后,预测的总辐射源项(来自气体和颗粒)在火焰区域较低,与传统方法获得的结果相比,火焰更热(在本研究中大约高50-150 K)。另外,通过对两个炉子使用改进的辐射特性模型,减少了预期的表面入射辐射,其中,差异与两种建模技术之间的预测辐射特性的差异有关。讨论了由燃烧模型,湍流颗粒扩散和湍流模型对辐射行为的影响所引起的数值不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号