首页> 外文OA文献 >Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data
【2h】

Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data

机译:通过结合单日期光学和雷达遥感数据,绘制巴西亚马逊地区主要土地覆盖类型和检索次生林年龄

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Secondary forests play an important role in restoring carbon and biodiversity lost previously through deforestation and degradation and yet there is little information available on the extent of different successional stages. Such knowledge is particularly needed in tropical regions where past and current disturbance rates have been high but regeneration is rapid. Focusing on three areas in the Brazilian Amazon (Manaus, Santarém, Machadinho d'Oeste), this study aimed to evaluate the use of single-date Landsat Thematic Mapper (TM) and Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) data in the 2007–2010 period for i) discriminating mature forest, non-forest and secondary forest, and ii) retrieving the age of secondary forests (ASF), with 100 m × 100 m training areas obtained by the analysis of an extensive time-series of Landsat sensor data over the three sites. A machine learning algorithm (random forests) was used in combination with ALOS PALSAR backscatter intensity at HH and HV polarizations and Landsat 5 TM surface reflectance in the visible, near-infrared and shortwave infrared spectral regions. Overall accuracy when discriminating mature forest, non-forest and secondary forest is high (95–96%), with the highest errors in the secondary forest class (omission and commission errors in the range 4–6% and 12–20% respectively) because of misclassification as mature forest. Root mean square error (RMSE) and bias when retrieving ASF ranged between 4.3–4.7 years (relative RMSE = 25.5–32.0%) and 0.04–0.08 years respectively. On average, unbiased ASF estimates can be obtained using the method proposed here (Wilcoxon test, p-value > 0.05). However, the bias decomposition by 5-year interval ASF classes showed that most age estimates are biased, with consistent overestimation in secondary forests up to 10–15 years of age and underestimation in secondary forests of at least 20 years of age. Comparison with the classification results obtained from the analysis of extensive time-series of Landsat sensor data showed a good agreement, with Pearson's coefficient of correlation (R) of the proportion of mature forest, non-forest and secondary forest at 1-km grid cells ranging between 0.97–0.98, 0.96–0.98 and 0.84–0.90 in the 2007–2010 period, respectively. The agreement was lower (R = 0.82–0.85) when using the same dataset to compare the ability of ALOS PALSAR and Landsat 5 TM data to retrieve ASF. This was also dependent on the study area, especially when considering mapping secondary forest and retrieving ASF, with Manaus displaying better agreement when compared to the results at Santarém and Machadinho d'Oeste.
机译:次生林在恢复先前因森林砍伐和退化而丧失的碳和生物多样性方面发挥着重要作用,但几乎没有关于不同演替阶段程度的信息。在过去和现在的干扰率很高但再生迅速的热带地区,特别需要这些知识。这项研究针对巴西亚马逊地区的三个地区(马瑙斯,圣塔伦,马哈迪尼奥奥斯特),旨在评估单日Landsat专题测绘仪(TM)和高级陆地观测卫星(ALOS)相控阵L波段合成器的使用孔径雷达(PALSAR)数据在2007-2010年期间用于:i)区分成熟森林,非森林和次生森林,以及ii)检索次生森林的年龄(ASF),通过该方法获得的100 m×100 m训练区域分析三个地点的大量Landsat传感器数据的时间序列。将机器学习算法(随机森林)与HH和HV极化处的ALOS PALSAR背向散射强度以及可见,近红外和短波红外光谱区域中的Landsat 5 TM表面反射率结合使用。区分成熟森林,非森林和次生森林的总体准确性很高(95–96%),次生森林类别中的误差最高(遗漏和委托误差分别在4–6%和12–20%的范围内)因为被误分类为成熟森林。检索ASF时的均方根误差(RMSE)和偏差分别在4.3-4.7年(相对RMSE = 25.5-32.0%)和0.04-0.08年之间。平均而言,可以使用此处提出的方法(Wilcoxon检验,p值> 0.05)获得无偏ASF估计值。但是,按5年间隔ASF分类进行的偏差分解表明,大多数年龄估计都存在偏差,在10至15岁以下的次生林中始终存在高估,而在至少20岁的次生林中却存在低估。与通过广泛的Landsat传感器数据时间序列分析获得的分类结果的比较表明,在1 km网格单元上,成熟森林,非森林和次生森林所占比例的皮尔逊相关系数(R)具有很好的一致性在2007-2010年期间,范围分别在0.97-0.98、0.96-0.98和0.84-0.90之间。使用同一数据集比较ALOS PALSAR和Landsat 5 TM数据检索ASF的能力时,一致性较低(R = 0.82-0.85)。这也取决于研究区域,特别是在考虑绘制次生林和检索ASF时,与在Santarém和Machadinho d'Oeste的结果相比,Manaus表现出更好的一致性。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号