首页> 外文OA文献 >Maximum Power Point Tracking for Cascaded PV-Converter Modules Using Two-Stage Particle Swarm Optimization
【2h】

Maximum Power Point Tracking for Cascaded PV-Converter Modules Using Two-Stage Particle Swarm Optimization

机译:基于两级粒子群优化的级联光伏转换器模块最大功率点跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods.
机译:本文提出了一种新颖的两阶段粒子群优化(PSO),用于在部分阴影条件(PSC)下对由级联PV转换器模块组成的PV系统的最大功率点跟踪(MPPT)控制。在该方案中,将改组蛙跳算法(SFLA)的分组方法与基本PSO算法结合在一起,可确保快速,准确地搜索全局极值。还引入了自适应速度因数以提高其收敛速度。应用了PWM算法,可以对PV源进行置换切换。该方法使该光伏系统能够为任意数量的光伏和转换器模块实现最大的发电量。所提出的MPPT方案的仿真研究是在一个系统上进行的,该系统具有两个链接的PV降压转换器模块和一个在其端子上连接的用于提供AC负载的dc-ac H桥。结果表明,这种类型的光伏系统允许每个模块在不影响其他模块的情况下达到最大发电量,并且与传统的P&O和PSO方法相比,新的控制方法可提供更高的功率输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号