首页> 外文OA文献 >Downscaling species occupancy from coarse spatial scales
【2h】

Downscaling species occupancy from coarse spatial scales

机译:从粗糙的空间尺度降低物种占有率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The measurement and prediction of species' populations at different spatial scales is crucial to spatial ecology as well as conservation biology. An efficient yet challenging goal to achieve such population estimates consists of recording empirical species' presence and absence at a specific regional scale and then trying to predict occupancies at finer scales. So far the majority of the methods have been based on particular species' distributional features deemed to be crucial for downscaling occupancy. However, only a minority of them have dealt explicitly with specific spatial features. Here we employ a wide class of spatial point processes, the shot noise Cox processes (SNCP), to model species occupancies at different spatial scales and show that species' spatial aggregation is crucial for predicting population estimates at fine scales starting from coarser ones. These models are formulated in continuous space and locate points regardless of the arbitrary resolution that one employs to study the spatial pattern. We compare the performances of nine models, calibrated at regional scales and demonstrate that a very simple class of SNCP, the Thomas process, is able to outperform other published models in predicting occupancies down to areas four orders of magnitude smaller than the ones employed for the parameterization. We conclude by explaining the ability of the approach to infer spatially explicit information from spatially implicit measures, the potential of the framework to combine niche and spatial models, and the possibility of reversing the method to allow upscaling.
机译:不同空间尺度上物种种群的测量和预测对于空间生态学和保护生物学至关重要。要实现这样的种群估计,一个有效而具有挑战性的目标包括在特定区域范围内记录经验物种的存在与否,然后尝试在更精细的规模上预测占有率。到目前为止,大多数方法都基于特定物种的分布特征,这些特征被认为对缩小居住空间至关重要。但是,只有少数人明确地处理了特定的空间特征。在这里,我们采用一类广泛的空间点过程,即散粒噪声Cox过程(SNCP),来模拟物种在不同空间尺度上的占用情况,并表明物种的空间聚集对于预测从较粗尺度开始的精细尺度上的种群估计至关重要。这些模型是在连续的空间中制定的,并且可以定位点,而与研究空间模式所采用的任意分辨率无关。我们比较了九种模型的性能,这些模型在区域范围内进行了校准,并证明了非常简单的SNCP类(托马斯过程)在预测占用率方面比其他已发布的模型要小4个数量级,优于其他已发表的模型。参数化。我们通过解释该方法从空间隐式测度推断空间显式信息的能力,该框架结合利基模型和空间模型的潜力以及逆转该方法以允许放大的可能性来得出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号