首页> 外文OA文献 >Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties
【2h】

Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties

机译:基于鲁棒pID的间接型迭代学习控制方法用于具有时变不确定性的批处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ased on the proportional-integral-derivative (PID) control structure widely used in engineering applications, a robust indirect-type iterative learning control (ILC) method is proposed for industrial batch processes subject to time-varying uncertainties. An important merit is that the proposed ILC design is independent of the PID tuning that aims primarily to hold robust stability of the closed-loop system, owing to the fact that the ILC updating law is implemented through adjusting the setpoint of the closed-loop PID control structure plus a feedforward control to the plant input from batch to batch. According to the robust H infinity control objective, a robust discrete-time PID tuning algorithm is given in terms of the plant state-space model description to accommodate for time-varying process uncertainties. For the batchwise direction, a robust ILC updating law is developed based on the two-dimensional (2D) control system theory. Only measured output errors of current and previous cycles are used to implement the proposed ILC scheme for the convenience of practical application. An illustrative example from the literature is adopted to demonstrate the effectiveness and merits of the proposed ILC method.
机译:基于在工程应用中广泛使用的比例积分微分(PID)控制结构,提出了一种鲁棒的间接型迭代学习控制(ILC)方法,用于时变不确定性的工业批量过程。一个重要的优点是,由于通过调节闭环PID的设定值来实现ILC更新定律,因此所提出的ILC设计与主要旨在保持闭环系统的鲁棒稳定性的PID调节无关。控制结构,以及对批次之间工厂输入的前馈控制。根据鲁棒的H无穷大控制目标,根据设备状态空间模型描述给出了鲁棒的离散时间PID调整算法,以适应时变过程的不确定性。对于分批方向,基于二维(2D)控制系统理论,开发了鲁棒的ILC更新律。为了实际应用的方便,仅使用当前和先前周期的测量输出误差来实现建议的ILC方案。文献中的一个示例被用来证明所提出的ILC方法的有效性和优点。

著录项

  • 作者

    Liu T; Wang XZ; Chen J;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号