首页> 外文OA文献 >PROV-TE: A Provenance-Driven Diagnostic Framework for Task Eviction in Data Centers
【2h】

PROV-TE: A Provenance-Driven Diagnostic Framework for Task Eviction in Data Centers

机译:pROV-TE:用于数据中心任务驱逐的源头驱动诊断框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cloud Computing allows users to control substantial computing power for complex data processing, generating huge and complex data. However, the virtual resources requested by users are rarely utilized to their full capacities. To mitigate this, providers often perform over-commitment to maximize profit, which can result in node overloading and consequent task eviction. This paper presents a novel framework that mines the huge and growing historical usage data generated by Cloud data centers to identify the causes of overloads. Provenance modelling is applied to add contextual meaning to the data, and the PROV-TE diagnostic framework provides algorithms to efficiently identify the causality of task eviction. Using simulation to reflect real world scenarios, our results demonstrate a precision and recall of the diagnostic algorithms of 83% and 90% respectively. This demonstrates a high level of accuracy of the identification of causes.
机译:云计算使用户可以控制用于复杂数据处理的大量计算能力,从而生成庞大而复杂的数据。但是,用户请求的虚拟资源很少被充分利用。为了缓解这种情况,提供程序经常执行超额承诺以使利润最大化,这可能导致节点超载和随之而来的任务逐出。本文提出了一个新颖的框架,该框架可挖掘由Cloud数据中心生成的庞大且不断增长的历史使用数据,以识别过载的原因。应用出处建模为数据添加上下文含义,并且PROV-TE诊断框架提供了有效识别任务逐出的因果关系的算法。使用仿真来反映现实情况,我们的结果表明诊断算法的精度和召回率分别为83%和90%。这表明原因识别的准确性很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号