首页> 外文OA文献 >Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors
【2h】

Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

机译:研究基于银纳米流体的直接吸收太阳能集热器的收集器效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.
机译:进行一维瞬态传热分析,以分析纳米颗粒(NP)的体积分数,收集器高度,照射时间,太阳通量和NP材料对收集器效率的影响。将数值结果与银纳米流体获得的实验结果进行了比较,以验证该模型,并获得了良好的一致性。数值结果表明,收集器效率随着收集器高度和NP体积分数的增加而增加,然后达到最大值。在模拟中使用的条件下,可以获得达到最大效率的90%的集热效率的最佳集热器高度(〜10mm)和颗粒浓度(〜0.03%)。然而,由于热损失增加,收集器效率随着照射时间的增加而降低。需要高的太阳能通量以在宽温度范围内保持高效率,这对于随后的能量利用是有利的。建模结果还显示,银和金纳米流体比二氧化钛纳米流体具有更高的光热转换效率,因为它们的吸收光谱与太阳辐射光谱相似。

著录项

  • 作者

    Chen M; He Y; Zhu J; Wen D;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号