首页> 外文OA文献 >A generalized residual technique for analysing complex movement models using earth mover's distance
【2h】

A generalized residual technique for analysing complex movement models using earth mover's distance

机译:利用推土机距离分析复杂运动模型的广义残差技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex systems of moving and interacting objects are ubiquitous in the natural and social sciences. Predicting their behaviour often requires models that mimic these systems with sufficient accuracy, while accounting for their inherent stochasticity. Although tools exist to determine which of a set of candidate models is best relative to the others, there is currently no generic goodness-of-fit framework for testing how close the best model is to the real complex stochastic system. We propose such a framework, using a novel application of the Earth mover's distance, also known as the Wasserstein metric. It is applicable to any stochastic process where the probability of the model's state at time t is a function of the state at previous times. It generalizes the concept of a residual, often used to analyse 1D summary statistics, to situations where the complexity of the underlying model's probability distribution makes standard residual analysis too imprecise for practical use. We give a scheme for testing the hypothesis that a model is an accurate description of a data set. We demonstrate the tractability and usefulness of our approach by application to animal movement models in complex, heterogeneous environments. We detail methods for visualizing results and extracting a variety of information on a given model's quality, such as whether there is any inherent bias in the model, or in which situations, it is most accurate. We demonstrate our techniques by application to data on multispecies flocks of insectivore birds in the Amazon rain forest. This work provides a usable toolkit to assess the quality of generic movement models of complex systems, in an absolute rather than a relative sense.
机译:在自然和社会科学中,移动和交互对象的复杂系统无处不在。预测它们的行为通常需要模型来模拟这些系统,并且要考虑到其固有的随机性,而该模型必须具有足够的准确性。尽管存在用于确定一组候选模型中相对于其他模型最佳的工具,但目前尚没有通用的拟合优度框架来测试最佳模型与实际复杂随机系统的接近程度。我们提出了这样一种框架,它使用了推土机距离的新颖应用,也称为Wasserstein度量。它适用于任何随机过程,其中模型在时间t的状态概率是先前时间的状态的函数。它将残差的概念推广到通常用于分析一维汇总统计信息的情况,这种情况适用于基础模型的概率分布的复杂性使得标准残差分析对于实际使用而言过于精确的情况。我们提供了一种方案来检验模型是数据集的准确描述这一假设。通过在复杂,异构环境中的动物运动模型中的应用,我们证明了我们方法的易处理性和实用性。我们详细介绍了用于可视化结果并提取有关给定模型质量的各种信息的方法,例如模型中是否存在固有偏差,或在哪种情况下最准确。我们通过将其应用于亚马逊雨林中多种食虫类鸟类的数据来证明我们的技术。这项工作提供了一个可用的工具包,以绝对而非相对的方式评估复杂系统的通用运动模型的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号