首页> 外文OA文献 >Using Learning Analytics to Devise Interactive Personalised Nudges for Active Video Watching
【2h】

Using Learning Analytics to Devise Interactive Personalised Nudges for Active Video Watching

机译:使用学习分析为活动视频观看设计交互式个性化微调

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Videos can be a powerful medium for acquiring soft skills, where learning requires contextualisation in personal experience and ability to see different perspectives. However, to learn effectively while watching videos, students need to actively engage with video content. We implemented interactive notetaking during video watching in an active video watching system (AVW) as a means to encourage engagement. This paper proposes a systematic approach to utilise learning analytics for the introduction of adaptive intervention - a choice architecture for personalised nudges in the AVW to extend learning. A user study was conducted and used as an illustration. By characterising clusters derived from user profiles, we identify different styles of engagement, such as parochial learning, habitual video watching, and self-regulated learning (which is the target ideal behaviour). To find opportunities for interventions, interaction traces in the AVW were used to identify video intervals with high user interest and relevant behaviour patterns that indicate when nudges may be triggered. A prediction model was developed to identify comments that are likely to have high social value, and can be used as examples in nudges. A framework for interactive personalised nudges was then conceptualised for the case study.
机译:视频可以成为获得软技能的有力媒介,在这种情况下,学习需要个人经验中的情境化和看到不同观点的能力。但是,为了在观看视频时有效学习,学生需要积极参与视频内容的学习。我们在主动视频观看系统(AVW)的视频观看过程中实施了互动式记笔记,以此来鼓励参与。本文提出了一种系统的方法,利用学习分析来引入自适应干预-一种针对AVW中个性化轻推的选择架构,以扩展学习。进行了用户研究并用作说明。通过表征从用户个人资料中得出的集群,我们可以确定不同的参与方式,例如狭och学习,习惯性视频观看和自我调节学习(这是目标理想行为)。为了找到进行干预的机会,AVW中的交互跟踪被用于识别具有很高用户兴趣的视频间隔以及指示何时触发轻推的相关行为模式。开发了一种预测模型,以识别可能具有较高社会价值的评论,并可以用作微调的示例。然后为案例研究概念化了一个交互式个性化微调的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号