首页> 外文OA文献 >Comparison of cohesive powder flowability measured by Schulze Shear Cell, Raining Bed Method, Sevilla Powder Tester and new Ball Indentation Method
【2h】

Comparison of cohesive powder flowability measured by Schulze Shear Cell, Raining Bed Method, Sevilla Powder Tester and new Ball Indentation Method

机译:schulze剪切池,雨床法,塞维利亚粉末测试仪和新球压痕法测量粘结粉末流动性的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Poor powder flow leads to many problems during manufacturing and can lead to inaccurate dosing and off-specification products. Powder flowability is commonly assessed under relatively high applied loads using shear cells by characterising the unconfined yield strength at a range of applied loads. For applied stresses below 1 kPa, it becomes increasingly difficult to obtain reliable values of the unconfined yield strength. The bulk cohesion and tensile strength of the powder are then obtained by extrapolating the yield locus to zero and negative loads, respectively. However, the reliability of this approximation for a given material is not known. To overcome this limitation, techniques such as the Raining Bed Method, Sevilla Powder Tester and the newly-developed Ball Indentation Method may be used. In this paper, we report our measurement results of the tensile strength of glass beads, α-lactose monohydrate and various sizes of fluid catalytic cracking powders determined by the Sevilla Powder Tester and Raining Bed Method and compare them with those inferred from the Schulze Shear Cell. The results of the latter are also compared with those of the Ball Indentation Method. The outcome suggests that in the case of shear cell tests, the extrapolation of the yield locus to lower or negative loads is unsafe. The ball indentation method enables the characterisation of highly cohesive powders at very low compressive loads; however extrapolation to negative loads is still not reliable. In contrast, the Sevilla Powder Tester and Raining Bed Methods are able to characterise the tensile strength directly, but high bulk cohesion poses difficulties as the internal bed failure needs to be analysed in order to reliably estimate the tensile strength. These methods provide a better understanding of powder flow behaviour at low stresses, thus enabling a greater control of manufacturing processes.
机译:粉末流动不良会导致制造过程中的许多问题,并可能导致配量和规格不合格的产品不准确。粉末流动性通常是通过使用剪切室在相对较高的施加载荷下通过表征一定范围的施加载荷下无限制的屈服强度来评估的。对于低于1 kPa的施加应力,越来越难以获得无极限屈服强度的可靠值。然后通过将屈服轨迹分别外推至零载荷和负载荷来获得粉末的整体内聚力和拉伸强度。然而,对于给定材料的这种近似的可靠性是未知的。为了克服该限制,可以使用诸如雨床法,塞维利亚粉末测试仪和新开发的球压痕法之类的技术。在本文中,我们报告了通过塞维利亚粉末测试仪和雨床法测定的玻璃珠,α-乳糖一水合物和各种尺寸的流化催化裂化粉的抗张强度的测量结果,并将其与舒尔兹剪切池推断的结果进行了比较。后者的结果也与球压痕法的结果进行了比较。结果表明,在剪切单元测试的情况下,将屈服轨迹外推到较低或负向的载荷是不安全的。球压痕法可以在非常低的压缩载荷下表征高粘性粉末。但是,外推负载荷仍然不可靠。相比之下,塞维利亚粉末测试仪和雨床法能够直接表征抗张强度,但是由于需要分析内部床的失效以便可靠地评估抗张强度,因此高松散内聚力带来了困难。这些方法可以更好地了解低应力下的粉末流动行为,从而可以更好地控制制造过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号