首页> 外文OA文献 >Binaural sound source localisation using a Bayesian-network-based blackboard system and hypothesis-driven feedback
【2h】

Binaural sound source localisation using a Bayesian-network-based blackboard system and hypothesis-driven feedback

机译:使用基于贝叶斯网络的黑板系统和假设驱动的反馈进行双声道声源定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An essential aspect of Auditory Scene Analysis is the localisation of sound sources in relation to theudposition of the listener in the surrounding environment. The human auditory system is capable ofudprecisely locating and separating different sound sources, even in noisy and reverberant environments,udwhereas mimicking this ability by computational means is still a challenging task. In this work, weudinvestigate a Bayesian-network-based approach in the context of binaural sound source localisation.udWe extend existing solutions towards a Bayesian network based blackboard system that includes expertudknowledge inspired by insights into the human auditory system. In order to improve estimationudof source positions and reduce uncertainty caused by front-back ambiguities, hypothesis-driven feedbackudis used. This is accomplished by triggering head movements based on inference results providedudby the Bayesian network. We evaluate the performance of our approach in comparison to existingudsolutions in a sound-source localisation task within a virtual acoustic environment.
机译:听觉场景分析的一个重要方面是相对于周围环境中听众的位置的声源定位。即使在嘈杂和混响的环境中,人类的听觉系统也能够精确地定位和分离不同的声源,而通过计算手段模仿这种能力仍然是一项艰巨的任务。在这项工作中,我们在双耳声源定位的背景下研究基于贝叶斯网络的方法。 ud我们将现有解决方案扩展到基于贝叶斯网络的黑板系统,该系统包括受人类听觉系统洞察力启发的专家知识。为了提高对源位置的估计 udf并减少由前后歧义引起的不确定性,使用了假设驱动的反馈 udis。这是通过根据贝叶斯网络提供的推断结果触发头部运动来实现的。与虚拟声学环境中的声源定位任务中的现有解决方案相比,我们评估了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号