首页> 外文OA文献 >Educational Data Mining: How Student’s Self-motivation and Learning Strategies Affect Actual Achievement
【2h】

Educational Data Mining: How Student’s Self-motivation and Learning Strategies Affect Actual Achievement

机译:教育数据挖掘:学生的自我激励和学习策略如何影响实际成就

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Educational data mining deals with developing methods for discovering uncovered information from educational context data. This study uses a dataset collected from online courses. The data record is composed of 45 attributes including: student’s year, gender, ethical background or weekly activities, and assessment values such as grade, intrinsic motivation, self-efficacy, effort regulation, metacognitive regulation, and interaction regulation. The goal of this study is to discover how self-motivation (intrinsic motivation and self-efficacy) and learning strategies (effort regulation, metacognitive regulation, and interaction regulation) are related with actual achievement behaviors which are represented by grade and score. Various data mining techniques such as association, classification, and clustering are applied to the dataset. Contrary to typical assumptions in Education Domain, our results show there is no particular evidence of correlations between self-reported motivation and grade and between learning strategies and grade. The research suggests that traditional measures such as exams, total time spent, weekly activities, familiarity with assignment instruction and discussion are more related to student’s actual achievement.
机译:教育数据挖掘处理用于从教育上下文数据中发现未发现信息的开发方法。本研究使用从在线课程收集的数据集。数据记录由45个属性组成,包括:学生的年龄,性别,道德背景或每周的活动,以及评估值,例如成绩,内在动机,自我效能感,努力调节,元认知调节和互动调节。这项研究的目的是发现自我动机(内在动机和自我效能感)和学习策略(努力调节,元认知调节和互动调节)如何与以成绩和分数表示的实际成就行为相关。各种数据挖掘技术(例如关联,分类和聚类)都应用于数据集。与教育领域的典型假设相反,我们的结果表明,没有特别的证据表明自我报告的动机和年级之间以及学习策略和年级之间存在相关性。研究表明,诸如考试,总花费时间,每周活动,对作业指导和讨论的熟悉度等传统衡量标准与学生的实际成绩更为相关。

著录项

  • 作者

    Jeong Hyonam;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号