首页> 外文OA文献 >Giant optical gain in a rare-earth-ion-doped waveguide amplifier
【2h】

Giant optical gain in a rare-earth-ion-doped waveguide amplifier

机译:稀土离子掺杂波导放大器中的巨大光学增益

摘要

For optical amplification, typically rare-earth-ion (RE) doped fiber amplifiers (RDFA) or semiconductor optical amplifiers (SOAs) are selected. Despite the weak transition cross-sections of RE ions and their low doping level in silica fibers, resulting in very low gain per unit length, the extremely long interaction lengths realized in fibers can lead to significant overall gain. SOAs can deliver similarly high overall gain over much shorter distances, which makes them suitable for providing on-chip gain. Very high material gain in the nanometer-wide recombination region of a III-V semiconductor, but small overlap with the usually µm-sized signal beam results in a modal gain of several hundred dB/cm. In contrast, the gain per unit length in RE-doped integrated waveguides has hardly exceeded a few dB/cm. Here we demonstrate an ultra-high modal gain of 950 dB/cm in a RE-doped waveguide amplifier, comparable to the modal gain reported for SOAs. The potassium double tungstates KGd(WO4)2, KY(WO4)2, and KLu(WO4)2 are excellent host materials for RE-doped lasers, partly thanks to the high transition cross-sections of RE ions in these hosts. In 2006, the first planar KY(WO4)2:Yb3+ waveguide laser was demonstrated. Co-doping the layer with Gd3+ and Lu3+ ions offers the possibility for lattice matching with the undoped KY(WO4)2 substrate and a significantly enhanced refractive index contrast, hence improved mode confinement. Microstructuring by Ar+ beam etching resulted in channel waveguides, in which lasing with 418 mW output power at 1023 nm and 71% slope efficiency vs. launched pump power was demonstrated. Replacing Y3+ in the layer completely by Gd3+ and Yb3+ ions results in highly doped channel waveguides with a refractive-index contrast of >2 x 10-2. These novel dielectric micro-structures combine a high dopant concentration, large transition cross-sections, and strong light confinement, all features that are crucial for achieving high optical gain, in a single device. When pumping such a KGd0.447Lu0.078Yb0.475(WO4)2 channel waveguide with a 932-nm Ti:Sapphire laser via a microscope objective, high inversion of the Yb3+ system is obtained. Signal light at the zero-phonon line at 980.6 nm, which is the wavelength of highest absorption and emission cross-section, exhibits a small-signal modal gain of 950 dB/cm, exceeding the gain per unit length previously reported in RE-doped materials by two orders of magnitude, thus paving the way for applications of on-chip integrated RE-doped amplifiers.
机译:为了进行光放大,通常选择掺杂稀土离子(RE)的光纤放大器(RDFA)或半导体光放大器(SOA)。尽管RE离子的过渡截面较弱,并且石英纤维中的掺杂水平较低,导致每单位长度的增益非常低,但纤维中实现的极长的相互作用长度却可以带来显着的整体增益。 SOA可以在更短的距离上提供类似的高总体增益,这使其适合于提供片上增益。在III-V半导体的纳米级复合区域中,材料增益非常高,但是与通常为µm大小的信号束重叠很小,导致模态增益为数百dB / cm。相反,掺RE的集成波导中每单位长度的增益几乎没有超过几dB / cm。在这里,我们证明了RE掺杂的波导放大器中的950 dB / cm的超高模态增益,可与SOA报告的模态增益相比。双钨酸钾KGd(WO4)2,KY(WO4)2和KLu(WO4)2是掺杂稀土的激光器的优良基质材料,部分原因是这些基质中RE离子的跃迁截面很高。 2006年,展示了第一台平面KY(WO4)2:Yb3 +波导激光器。用Gd3 +和Lu3 +离子共掺杂该层提供了与未掺杂的KY(WO4)2衬底进行晶格匹配的可能性,并显着提高了折射率对比度,从而改善了模式限制。通过Ar +束刻蚀进行的微结构化产生了通道波导,其中展示了在1023 nm处具有418 mW输出功率和发射功率相对于发射泵浦功率的斜率效率为71%的激光发射。用Gd3 +和Yb3 +离子完全取代该层中的Y3 +会导致高掺杂的通道波导,其折射率对比> 2 x 10-2。这些新颖的介电微结构将高掺杂浓度,大过渡截面和强光限制结合在一起,所有这些功能对于在单个器件中实现高光学增益至关重要。通过显微镜物镜将KGd0.447Lu0.078Yb0.475(WO4)2通道波导与932 nm Ti:蓝宝石激光器一起泵浦时,可获得Yb3 +系统的高度反转。零声子线在980.6 nm处的信号光是吸收和发射截面最大的波长,它显示的小信号模态增益为950 dB / cm,超过了以前在掺稀土元素中报道的每单位长度的增益。两种材料的数量级,从而为片上集成稀土掺杂放大器的应用铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号