首页> 外文OA文献 >Elevating Prediction Accuracy in Trust-aware Collaborative Filtering Recommenders through T-index Metric and TopTrustee lists
【2h】

Elevating Prediction Accuracy in Trust-aware Collaborative Filtering Recommenders through T-index Metric and TopTrustee lists

机译:通过T-index metric和TopTrustee列表提高信任感知协同过滤推荐器的预测准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growing popularity of Social Networks raises theudimportant issue of trust. Among many systems which haveudrealized the impact of trust, Recommender Systems haveudbeen the most influential ones. Collaborative Filtering Recommenders take advantage of trust relations between usersudfor generating more accurate predictions. In this paper, weudpropose a semantic recommendation framework for creatingudtrust relationships among all types of users with respectudto different types of items, which are accessed by uniqueudURI across heterogeneous networks and environments. Weudgradually build up the trust relationships between usersudbased on the rating information from user profiles and itemudprofiles to generate trust networks of users. For analyzingudthe formation of trust networks, we employ T-index as anudestimate of a user’s trustworthiness to identify and selectudneighbors in an effective manner. In this work, we utilizeudT-index to form the list of an item’s raters, called Top-udTrustee list for keeping the most reliable users who haveudalready shown interest in the respective item. Thus, when auduser rates an item, he/she is able to find users who canudbe trustworthy neighbors even though they might not beudaccessible within an upper bound of traversal path length.udAn empirical evaluation demonstrates how T-index improvesudthe Trust Network structure by generating connections toudmore trustworthy users. We also show that exploiting Tindexudresults in better prediction accuracy and coverageudof recommendations collected along few edges that connectudusers on a Social Network.
机译:社交网络的日益普及引发了不重要的信任问题。在许多已经充分认识到信任影响的系统中,推荐系统已成为最具影响力的系统。协作过滤推荐器利用用户 ud之间的信任关系来生成更准确的预测。在本文中,我们提出了一个语义推荐框架,该框架用于在所有类型的用户之间创建关于不同类型项的udtrust关系,并通过异类udURI在异构网络和环境中进行访问。我们根据来自用户配置文件和项目 udprofiles的评级信息,逐步建立用户 ud之间的信任关系,以生成用户的信任网络。为了分析信任网络的形成,我们使用T-index作为用户信任度的估计,以有效地识别和选择邻居。在这项工作中,我们利用 udT-index构成项目评分者的列表,称为“ Top- udTrustee list”,以保持对 udd表现出对各个项目的兴趣的最可靠用户。因此,当一个 uduser为一个项目评分时,即使他们在遍历路径长度的上限内可能不是 udaccess的,他/她也能够找到 ud可靠的邻居的用户。 ud实证评估证明了T-index通过与可信赖的用户建立连接来改善可信赖网络的结构。我们还显示,利用Tindex udres可以提高沿社交网络上连接 uduser的少数边缘收集的推荐的准确性和覆盖范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号