首页> 外文OA文献 >Predicting Listener Backchannels: A Probabilistic Multimodal Approach
【2h】

Predicting Listener Backchannels: A Probabilistic Multimodal Approach

机译:预测监听器反向信道:概率多模态方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During face-to-face interactions, listeners use backchannel feedback such as head nods as a signal to the speaker that the communication is working and that they should continue speaking. Predicting these backchannel opportunities is an important milestone for building engaging and natural virtual humans. In this paper we show how sequential probabilistic models (e.g., Hidden Markov Model (HMM) or Conditional Random Fields (CRF)) can automatically learn from a database of human-to-human interactions to predict listener backchannels using the speaker multimodal output features (e.g., prosody, spoken words and eye gaze). The main challenges addressed in this paper are automatic selection of the relevant features and optimal feature representation for probabilistic models. For prediction of visual backchannel cues (i.e., head nods), our prediction model shows a statistically significant improvement over a previously published approach based on hand-crafted rules.
机译:在面对面的交互过程中,听众会使用诸如头点头之类的反向通道反馈作为信号,向说话者表明交流正在有效并且应该继续讲话。预测这些反向渠道的机会,对于培养具有吸引力的自然虚拟人来说是一个重要的里程碑。在本文中,我们展示了顺序概率模型(例如,隐马尔可夫模型(HMM)或条件随机场(CRF))如何能够从人与人之间的交互作用的数据库中自动学习,以使用扬声器多模态输出功能预测听众的反向声道(例如韵律,口语和视线)。本文解决的主要挑战是自动选择相关特征和概率模型的最佳特征表示。对于视觉反向通道提示(即头点头)的预测,我们的预测模型显示出比以前基于手工规则发布的方法具有统计学上的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号