首页> 外文OA文献 >Increasing NER recall with minimal precision loss
【2h】

Increasing NER recall with minimal precision loss

机译:以最小的精度损失增加NER召回率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Named Entity Recognition (NER) is broadly used as a first step toward the interpretation of text documents. However, for many applications, such as forensic investigation, recall is currently inadequate, leading to loss of potentially important information. Entity class ambiguity cannot be resolved reliably due to the lack of context information or the exploitation thereof. Consequently, entity classification introduces too many errors, leading to severe omissions in answers to forensic queries. We propose a technique based on multiple candidate labels effectively postponing decisions for entity classification to query time. Entity resolution exploits user feedback: a user is only asked for feedback on entities relevant to his/her query. Moreover, giving feedback can be stopped anytime when query results are considered good enough. We propose several interaction strategies that obtain increased recall with little loss in precision.
机译:命名实体识别(NER)被广泛用作解释文本文档的第一步。但是,对于许多应用程序(例如法医调查),召回目前不足,从而导致潜在重要信息的丢失。由于缺少上下文信息或其利用,无法可靠地解决实体类的歧义。因此,实体分类会引入太多错误,导致法医查询答案严重遗漏。我们提出了一种基于多个候选标签的技术,该技术可以有效地推迟实体分类的决策时间。实体解析利用了用户反馈:仅要求用户提供有关与其查询相关的实体的反馈。此外,当查询结果被认为足够好时,可以随时停止提供反馈。我们提出了几种交互策略,这些策略可以提高召回率,而精度损失很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号