首页> 外文OA文献 >Adaptive and Online One-Class Support Vector Machine-based Outlier Detection Techniques for Wireless Sensor Networks
【2h】

Adaptive and Online One-Class Support Vector Machine-based Outlier Detection Techniques for Wireless Sensor Networks

机译:基于自适应和在线一类支持向量机的无线传感器网络异常检测技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Outlier detection in wireless sensor networks is essential to ensure data quality, secure monitoring and reliable detection of interesting and critical events. A key challenge for outlier detection in wireless sensor networks is to adaptively identify outliers in an online manner with a high accuracy while maintaining the resource consumption of the network to a minimum. In this paper, we propose one-class support vector machine-based outlier detection techniques that sequentially update the model representing normal behavior of the sensed data and take advantage of spatial and temporal correlations that exist between sensor data to cooperatively identify outliers. Experiments with both synthetic and real data show that our online outlier detection techniques achieve high detection accuracy and low false alarm rate.
机译:无线传感器网络中的异常检测对于确保数据质量,安全监控以及对有趣和重要事件的可靠检测至关重要。无线传感器网络中离群值检测的关键挑战在于以高精度在线自适应地识别离群值,同时将网络的资源消耗保持在最低水平。在本文中,我们提出了基于一类基于支持向量机的离群值检测技术,该技术顺序更新代表检测数据正常行为的模型,并利用传感器数据之间存在的时空相关性来协同识别离群值。综合和真实数据的实验表明,我们的在线异常检测技术可实现较高的检测精度和较低的误报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号