首页> 外文OA文献 >The Kalman-Yakubovich-Popov lemma in a behavioural framework and polynomial spectral factorization
【2h】

The Kalman-Yakubovich-Popov lemma in a behavioural framework and polynomial spectral factorization

机译:Kalman-Yakubovich-popov引理在行为框架和多项式谱分解中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The classical Kalman-Yakubovich-Popov lemma provides a link between dissipativity of a system in state-space form and the solution to a linear matrix inequality. In this paper we derive the KYP lemma for linear systems described by higher-order differential equations. The result is an LMI in terms of the original coefficients in which the dissipativity problem is posed. Subsequently we study the connection between dissipativity and spectral factorization of polynomial matrices. This enables us to derive a new algorithm for polynomial spectral factorization in terms of an LMI in the coefficients of the polynomial matrix
机译:经典的Kalman-Yakubovich-Popov引理提供了状态空间形式的系统的耗散性与线性矩阵不等式的解之间的联系。在本文中,我们推导了由高阶微分方程描述的线性系统的KYP引​​理。结果是就原始系数而言,LMI造成了耗散性问题。随后,我们研究了耗散性与多项式矩阵的谱分解之间的联系。这使我们能够根据多项式矩阵系数中的LMI导出用于多项式频谱分解的新算法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号