首页> 外文OA文献 >Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter
【2h】

Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter

机译:使用滑动窗口卡尔曼滤波器主动控制时变宽带噪声和振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of convergence than instantaneousgradient least-mean-squares algorithms and possibly also a better tracking performance. A multiple input/ multiple output Kalman algorithm was derived to perform this state estimation. To make the algorithm more suitable for real-time applications, the Kalman filter was written in a fast array form and the secondary path state matrices were implemented in output normal form. The resulting filter implementation was verified in simulations and in real-time experiments. It was found that for a constant primary path the filter had a fast rate of convergence and was able to track time-varying spectra. For a forgetting factor equal to unity the system was robust but the filter was unable to track rapid changes in the primary path. A forgetting factor lower than unity gave a significantly improved tracking performance but led to a numerical instability for the fast array form of the algorithm. To improve the numerical behavior, while enabling fast tracking and convergence, several variants are described in this paper. Results will be shown for a sliding window Recursive Least Squares filter in fast array form, which will later be extended to a full Kalman filter implementation by taking into account the uncertainty of the secondary path between the control sources and the error sensors. Multiple variants will be discussed in this paper. The first variant is the standard sliding window technique, which applies both updates and downdates to the filter coefficients. The second variant is an algorithm which only applies an update step to the filter coefficients and interprets the downdate step as an addition of a covariance matrix to the Riccati equation. The third variant uses an implicit forgetting factor. These implementations use a factorized form of the hyperbolic orthogonal transformation matrix. The different techniques will be applied to measured data of noise in houses near the runway of an airport. Results are given of the performance regarding tracking, convergence and numerical stability of the algorithms.
机译:最近,提出了一种多输入/多输出卡尔曼滤波器技术来控制随时间变化的宽带噪声和振动。通过根据状态估计问题描述前馈宽带有源噪声控制问题,可以实现比瞬时梯度最小均方算法更快的收敛速度,并且还可能具有更好的跟踪性能。推导了多输入/多输出卡尔曼算法来执行该状态估计。为了使该算法更适合于实时应用,以快速数组形式编写了卡尔曼滤波器,并以输出法线形式实现了辅助路径状态矩阵。在仿真和实时实验中验证了最终的滤波器实现。已经发现,对于恒定的主路径,滤波器具有很快的收敛速度并且能够跟踪时变光谱。对于一个等于1的遗忘因子,系统很健壮,但滤波器无法跟踪主要路径中的快速变化。小于1的遗忘因子可显着改善跟踪性能,但会导致算法的快速数组形式出现数值不稳定。为了改善数值性能,同时实现快速跟踪和收敛,本文介绍了几种变体。结果将以快速数组形式显示滑动窗口递归最小二乘滤波器,然后考虑到控制源和误差传感器之间的次级路径的不确定性,将其扩展到完整的卡尔曼滤波器实现。本文将讨论多种变体。第一种变体是标准的滑动窗口技术,该技术将更新和降级都应用于滤波器系数。第二种变型是仅对滤波器系数应用更新步长并将降级步长解释为对Riccati方程添加协方差矩阵的算法。第三种变体使用隐式的遗忘因子。这些实现使用双曲线正交变换矩阵的分解形式。不同的技术将应用于机场跑道附近房屋中的噪声测量数据。给出了算法跟踪,收敛和数值稳定性方面的性能结果。

著录项

  • 作者

    Ophem S. van; Berkhoff A.P.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号