首页> 外文OA文献 >Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input
【2h】

Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input

机译:具有显性电子加热的高约束模式的绝热和相应的扭矩输入变化

摘要

The ratio of heating power going to electrons and ions will undergo a transition from mixed electron and ion heating as it is in current fusion experiments to dominant electron heating in future experiments and reactors. In order to make valid projections towards future devices the connected changes in plasma response and performance are important to be study and understand: Do electron heated plasmas behave systematically different or is the change of heated species fully compensated by heat exchange from electrons to ions? How does particle transport influence the density profile? Is the energy confinement and the H-mode pedestal reduced with reduced torque input? Does the turbulent transport regime change fundamentally? The unique capabilities of the ECRH system at ASDEX Upgrade enable this change of heated species by replacing NBI with ECRH power and thereby offer the possibility to discuss these and other questions. ududFor low heating powers corresponding to high collisionalities the transition from mixed electron and ion heating to pure electron heating showed next to no degradation of the global plasma parameters and no change of the edge values of kinetic profiles. The electron density shows an increased central peaking with increased ECRH power. The central electron temperature stays constant while the ion temperature decreases slightly. The toroidal rotation decreases with reduced NBI fraction, but does not influence the profile stability. The power balance analysis shows a large energy transfer from electrons to ions, so that the electron heat flux approaches zero at the edge whereas the ion heat flux is independent of heating mix. The ion heat diffusivity exceeds the electron one. udFor high power, low collisionality discharges global plasma parameters show a slight degradation with increasing electron heating. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The electron temperature profile is unchanged whereas the central ion temperature decreases significantly with increasing ECRH fraction. The relative contribution of the heat exchange is smaller so that the electrons still carry a substantial fraction of heat at the edge. The ion heat flux is still independent of the heating mix and the ion heat diffusivity exceeds the electron one. udThe radial electrical field does not show any variation with changing heating mix. The analysis of the whole database of discharges shows a degradation of the ion temperature gradient with increasing Te/Ti and a steepening with increasing gradient of the toroidal rotation. These findings complement previous studies. udThe electron density, and the electron and ion temperatures were modelled with a first principle code. The applied sawtooth model could reproduce the experimental observations. The profile shapes, the changing Te/Ti and the peaking of the density and temperature profiles agree very well with the experimental data. Linear gyrokinetic calculations found the ion temperature gradient mode to be the dominant candidate for heat transport. The investigations can explain the observed phenomena in the experiment, like the different degree of increase of ion heat flux or density peaking for various collisionalities. ududThe results presented in this work show a consistent picture of the observed phenomena and the understanding of the main underlying physics. They allow a correct implementation in the applied computer codes and a reliable prediction of the performance of future fusion devices.
机译:电子和离子的加热功率比将经历从混合电子和离子加热的转变,就像在当前聚变实验中那样,过渡到未来实验和反应堆中的主要电子加热。为了对未来的设备做出正确的预测,必须研究和理解等离子体响应和性能的相关变化:电子加热的等离子体的行为是否系统地不同,或者加热物种的变化是否通过电子与离子的热交换得到了充分补偿?粒子传输如何影响密度分布?通过减少扭矩输入是否会降低能量限制和H模式基座?湍流的运输方式会从根本上改变吗?通过在ASDEX升级中使用ECRH系统的独特功能,可以通过用ECRH功率代替NBI来实现加热物种的这种变化,从而可以讨论这些问题和其他问题。 电子密度随ECRH功率的增加而显示出增加的中心峰。中心电子温度保持恒定,而离子温度略有下降。环形旋转随着NBI分数的减小而减小,但不影响轮廓稳定性。功率平衡分析表明,从电子到离子的能量转移很大,因此电子热通量在边缘处接近零,而离子热通量与加热混合无关。离子的热扩散率超过电子一。对于高功率,低碰撞放电,总体等离子体参数随电子加热的增加而略有下降。密度曲线显示出很强的峰值,当改变加热混合时,峰值保持不变。电子温度曲线不变,而中心离子温度随着ECRH分数的增加而显着降低。热交换的相对贡献较小,因此电子仍然在边缘处携带相当一部分热量。离子热通量仍与加热混合物无关,并且离子热扩散率超过电子一。 ud径向电场不会随着加热混合的变化而变化。整个放电数据库的分析表明,离子温度梯度随Te / Ti的增加而降低,而随着环形旋转梯度的增加而变陡。这些发现补充了以前的研究。 ud使用第一原理代码对电子密度以及电子和离子温度进行建模。应用的锯齿模型可以重现实验结果。轮廓形状,变化的Te / Ti以及密度和温度轮廓的峰值与实验数据非常吻合。线性陀螺动力学计算发现离子温度梯度模式是热传递的主要候选者。研究可以解释实验中观察到的现象,例如各种碰撞的离子热通量的增加程度不同或密度峰值不同。 ud ud这项工作中呈现的结果显示出观察到的现象和对主要基础物理学的理解是一致的。它们允许在所应用的计算机代码中正确实施,并可以可靠地预测未来融合设备的性能。

著录项

  • 作者

    Sommer Fabian;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 入库时间 2022-08-20 21:04:21

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号