首页> 外文OA文献 >Novel Cavity Optomechanical Systems at the Micro- and Nanoscale and Quantum Measurements of Nanomechanical Oscillators
【2h】

Novel Cavity Optomechanical Systems at the Micro- and Nanoscale and Quantum Measurements of Nanomechanical Oscillators

机译:微纳米尺度的新型腔光机械系统和纳米机械振荡器的量子测量

摘要

This thesis reports on coupling optical microresonators to micro- and nanomechanical oscillators. The mutual optomechanical coupling based on radiation pressure between the microcavity and a mechanical degree of freedom modulating its spatial structure thereby allows both transduction and actuation of the motion of the mechanical degree of freedom by the light field launched into the microcavity.The first part of the thesis reports on a novel experimental approach based on cavity enhanced evanescent near-fields of toroid microresonators. It enables the extension of dispersive cavity optomechanical coupling to sub-wavelength scale nanomechanical oscillators which are at the heart of a variety of precision measurements. The optomechanical coupling present in the developed system is carefully analyzed experimentally and good agreement with theoretical expectations is found. The demonstrated platform allows transduction of nanomechanical motion with an exceptionally high sensitivity, outperforming the previous state-of-the-art transducers. Thereby, for the first time a measurement imprecision lower than the level of the standard quantum limit is achieved. In the present measurements, quantum backaction should already be the dominating contribution to the measurement sensitivity which is however masked by thermal noise.This may pave the way to the first experimental demonstration of radiation pressure quantum backaction on a solid-state mechanical oscillator.Moreover, the radiation pressure interaction between evanescent cavity field and nanomechanical oscillator is shown to enable actuating and controlling the motional state of the oscillator. Both amplification, leading to self-sustained mechanical oscillations, and cooling by radiation pressure dynamical backaction is reported. In addition, the capability of the near-field platform to implement resonant interaction of a mechanical mode with two optical modes is shown as well as the feasibility of quadratic coupling to the nanomechanical oscillators.In the second part of the thesis monolithic on-chip resonators that combine ultra-low optical and mechanical dissipation are designed. To this end, the intrinsic mechanical modes of toroid microresonators are analyzed in detail. High-sensitivity measurements enable the observation of a plethora of mechanical modes and good agreement with finite element modelling is found. In particular the dissipation mechanisms limiting their mechanical quality are studied. Clamping losses are identified as the dominant loss mechanism at room temperature. Using a novel geometric design, these are systematically minimized which leads to spoke-supported microresonators with intrinsic material-loss limited mechanical quality factors rivalling the best published values at similar frequencies.
机译:这篇论文报道了将光学微谐振器耦合到微机械和纳米机械振荡器。基于微腔之间的辐射压力和调节其空间结构的机械自由度的互光机械耦合允许通过向微腔内发射的光场进行机械自由度运动的传导和致动。论文报道了一种基于环形微谐振器的腔增强渐逝近场的新型实验方法。它使色散腔光机械耦合扩展到亚波长尺度的纳米机械振荡器,而后者是各种精密测量的核心。实验中仔细分析了已开发系统中存在的光机耦合,并发现与理论预期的良好一致性。演示过的平台允许以超高的灵敏度进行纳米机械运动的转换,其性能优于以前的最新换能器。由此,首次实现了低于标准量子极限水平的测量不精确度。在目前的测量中,量子反作用应该已经是对测量灵敏度的主要贡献,但是被热噪声掩盖了,这可能为固态机械振荡器上辐射压力量子反作用的第一个实验演示铺平了道路。示出了e逝腔场与纳米机械振荡器之间的辐射压力相互作用,以致动并控制振荡器的运动状态。据报道,这两种放大都会导致自持的机械振荡,并且会通过辐射压力动态反向作用而冷却。此外,还展示了近场平台实现机械模式与两种光学模式的共振相互作用的能力,以及与纳米机械振荡器进行二次耦合的可行性。在论文的第二部分,单片片上共振器结合了超低光学和机械耗散的设计。为此,将对环形微谐振器的固有机械模式进行详细分析。高灵敏度的测量可以观察多种机械模式,并且与有限元建模具有良好的一致性。特别是研究了限制其机械质量的耗散机制。夹紧损耗被确定为室温下的主要损耗机理。使用新颖的几何设计,这些被系统地最小化,从而导致辐条支撑的微谐振器具有固有的材料损耗有限的机械品质因数,可与相似频率下的最佳公开值相媲美。

著录项

  • 作者

    Anetsberger Georg;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号