首页> 外文OA文献 >Switching on the first light in the Universe
【2h】

Switching on the first light in the Universe

机译:打开宇宙中的第一盏灯

摘要

Star formation (SF) is still an unsolved problem in astrophysics.Gas cooling is the principal mechanism leading tothe condensation of gas and consequently to star and structureformation.In a metal-free environment, the main available coolants are H, He,H$_2$ and HD; once the gas is enriched with metals, these alsobecome important.In this work, in order to properly determine the SF in the earlyUniverse, we compute fine-structure transition metal cooling andimplement and test molecular chemistry.Moreover, we investigate its redshift ($z$) evolutionand compare different modeling running very high-resolution,three-dimensional, N-body/hydrodynamic simulations includingnon-equilibrium, atomic and molecular chemistry, SFprescriptions and feedback effects.We also study how the primordial SF changes accordingly todifferent semi-analytical approaches, cosmological parameters, initialset-ups and critical metallicity ($Z_{crit}$) for the transition froma metal-free SF regime to a standard enriched one.Our main findings are:the H$_2$ molecule is the most relevant coolant in early times;inclusion of HD cooling results in a $sim 10%-20%$ higher gasclumping;metal cooling at low temperatures can have a significant impact on theformation and evolution of first objects;typical numerical ``sub-grid'' models fail in following the coolingof primordial gas and predict too early SF ($zsim 30$);considering molecular cooling, we get a postponed epoch ($zsim 15$)for the same initial conditions;rare, high-density peak can host SF even at $zgtrsim 40$;metal-free SF regime is completely negligiblewith respect to the global SF rate, because of the veryshort first star life-times;it has some relevance only for $Delta zsimeq 1$ (at $zsim 16$);primordial pollution up to $sim 10^{-3},Z_odot$ootnote[1]{The solar metallicity is $Z_odotsimeq 0.02$.}, or higher, isextremely rapid and allows for a very fast transition to standard SFregimes;the different SF rates and metal enrichment got fordifferent $Z_{crit}$ are well distinguishable and span about one orderof magnitude for $Z_{crit}/Z_odot in [10^{-6}, 10^{-3}]$.Given the importance of the initial stellar mass distributionfunction, an analytical model describing its possible derivation fromturbulent dissipation is presented.
机译:恒星形成(SF)仍然是天体物理学中尚未解决的问题。气体冷却是导致气体凝结并最终导致恒星和结构形成的主要机制。在无金属的环境中,主要可用的冷却剂为H,He,H $ _2 $和HD;一旦气体中富含金属,这些元素也将变得很重要。在这项工作中,为了正确确定早期宇宙中的SF,我们计算了精细结构的过渡金属的冷却和实施并测试了分子化学。此外,我们研究了其红移($ z $)演化并比较运行高分辨率,三维,N体/流体动力学模拟的不同模型,包括非平衡,原子和分子化学,SF处方和反馈效应。我们还研究了原始SF如何因不同的半分析方法而发生变化,宇宙学参数,初始设置和临界金属性($ Z_ {crit} $),从无金属的SF模式过渡到标准富集模式。我们的主要发现是:H $ _2 $分子是最相关的早期的冷却液;包括HD冷却会导致气体聚集增加 sim 10 %-20 %$;低温下的金属冷却可能会对第一冷却液的形成和演变产生重大影响对象;典型的数值``子网格''模型无法跟随原始气体的冷却并预测SF太早($ z sim 30 $);考虑分子冷却,我们得到了一个被推迟的时期($ z sim 15 $)在相同的初始条件下;罕见的高密度峰值即使在$ z gtrsim 40 $时也可以容纳SF;由于第一星的寿命很短,因此无金属SF体制相对于全球SF率完全可以忽略不计;仅与$ Delta z simeq 1 $(在$ z sim 16 $)相关;原始污染高达$ sim 10 ^ {-3} ,Z_ odot $ footnote [1] {金属度为$ Z_ odot simeq 0.02 $。}或更高,极快并且可以非常快速地过渡到标准SF体制;不同的SF速率和金属富集得到不同的$ Z_ {crit} $可以很好地区分和跨越。 $ Z_ {crit} / Z_ odot in [10 ^ {-6},10 ^ {-3}] $中的一个数量级。鉴于初始恒星质量分布函数的重要性,一个描述其可能源自扰动的解析模型提出了积极的消散。

著录项

  • 作者

    Maio Umberto;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号