首页> 外文OA文献 >Small Sample Stochastic Tail Modeling: Tackling Sampling Errors and Sampling Bias by Pivot-Distance Sampling and Parametric Curve Fitting Techniques
【2h】

Small Sample Stochastic Tail Modeling: Tackling Sampling Errors and Sampling Bias by Pivot-Distance Sampling and Parametric Curve Fitting Techniques

机译:小样本随机尾部建模:通过枢轴距离采样和参数曲线拟合技术解决采样误差和采样偏差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe two original open source software applications that have been developed to aid model efficiency studies: (1) CSTEP (Cluster Sampling for Tail Estimation of Probability) for reducing sampling error through variations of distance sampling and cluster/pivot processes; and (2) AMOOF2 (Actuarial Model Outcome Optimal Fit Version 2.0) for mitigating small sample bias in parametric, time-efficient probability density function fitting. CSTEP uses the scenario reduction method of representative scenarios to sample scenarios from a population of stochastic scenarios to obtain a sample-run distribution of a financial outcome that can be analyzed by AMOOF2 to fit the optimal probability density function.
机译:我们描述了两个原始的开源软件应用程序,它们已经开发出来以帮助进行模型效率研究:(1)CSTEP(概率尾部估计的集群采样),用于通过距离采样和聚类/枢轴过程的变化来减少采样误差; (2)AMOOF2(精算模型结果最佳拟合版本2.0),用于缓解参数化,时效概率密度函数拟合中的小样本偏差。 CSTEP使用代表性方案的方案简化方法从一组随机方案中抽取方案,以获取财务成果的抽样运行分布,可以通过AMOOF2对其进行分析,以拟合最佳概率密度函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号