首页> 外文OA文献 >Retention modeling and optimization of pH value and solvent composition in HPLC using back-propagation neural networks and uniform design
【2h】

Retention modeling and optimization of pH value and solvent composition in HPLC using back-propagation neural networks and uniform design

机译:使用反向传播神经网络和均匀设计保留HpLC中pH值和溶剂组成的保留建模和优化

摘要

A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.
机译:提出了一种利用人工神经网络和均匀设计优化HPLC中pH值和流动相组成的新方法。作为第一步。根据统一的设计安排并进行了七个初始实验。然后,使用反向传播神经网络对溶质的保留行为进行建模。一种试验方法被用来确保神经网络的预测能力。最后,可以根据全局分辨率函数找到最佳分离条件。通过优化碱性和酸性样品的分离条件,验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号