首页> 外文OA文献 >Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process
【2h】

Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

机译:致力于在连续气相方法中工业规模合成尺寸可控的超纯单重态纳米颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure nonagglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.
机译:纳米粒子的连续气相合成与快速团聚有关,这可能是许多应用的限制因素。在本报告中,我们通过提供实验证据来支持气相方法可用于生产在室温下具有可调尺寸的超纯非团聚“单峰”纳米粒子,从而挑战了这一范例。通过控制粒子生长区中的温度以确保碰撞实体完全合并,原则上可以将单峰的大小从单个原子的大小调节到任何所需的值。我们在一个简单的分析模型的背景下评估我们的结果,以探索单重态大小对操作条件的依赖性。模型与实验测量值的一致性表明,这些方法可以有效地用于生产单峰,并可以通过许多其他方法进一步处理单峰。结合可进行火花消融的扩大规模和无限混合的功能,这项研究提供了一种易于使用的概念,可用于生产先进材料的低成本工业规模纳米加工的关键构件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号