首页> 外文OA文献 >Learning while preventing mechanical failure due to random motions
【2h】

Learning while preventing mechanical failure due to random motions

机译:在防止随机运动引起的机械故障的同时进行学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis one of the negative effects of learning from scratch on the durability of LEO is analysed. LEO is one of the bipedal walking robots of the TU Delft Robotics Institute. It uses Reinforcement learning to learn a stable and energy efficient walking gait. LEO’s learning algorithm causes its gears to fail faster during the initial learning phase than during the optimisation phase. One of the reasons for the low mean time between failure (MTBF) is the learning algorithm itself. The learning algorithm initially causes random motions which in turn cause high stresses in the gears and mechanical failure. The MTBF due to these motions can be predicted. This MTBF can be increased by adapting the learning algorithm in various ways. We investigated 5 algorithms that increase the MTBF and compared them to SARSA(?) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(?). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, the MTBF can be increased by a factor of 108 compared to SARSA(?) learning. This indicates that in some cases, failures due to random motions can be prevented without decreasing the learning performance.
机译:本文分析了从头开始学习对LEO耐久性的负面影响之一。 LEO是TU Delft机器人学院的双足步行机器人之一。它使用强化学习来学习稳定且节能的步行步态。 LEO的学习算法导致其齿轮在初始学习阶段的故障比在优化阶段的故障更快。平均故障间隔时间(MTBF)较低的原因之一是学习算法本身。学习算法最初会引起随机运动,进而引起齿轮中的高应力和机械故障。可以预测由于这些运动引起的MTBF。可以通过以各种方式调整学习算法来增加此MTBF。我们研究了5种提高MTBF的算法,并将其与SARSA(?)学习进行了比较。通常,增加MTBF会降低学习性能。研究的三种算法在保持学习性能近似等于SARSA(?)的同时,无法提高MTBF。有两种算法可以做到这一点:PADA算法和低通滤波器算法。在LEO的情况下,与SARSA(?)学习相比,MTBF可以提高108倍。这表明在某些情况下,可以防止由于随机运动而导致的故障,而不会降低学习性能。

著录项

  • 作者

    Meijdam, H.J. (author);

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号