首页> 外文OA文献 >Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes
【2h】

Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes

机译:具有对象和属性的弱监督图像标注和分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose to model complex visual scenes using a non-parametric Bayesian model learned from weakly labelled images abundant on media sharing sites such as Flickr. Given weak image-level annotations of objects and attributes without locations or associations between them, our model aims to learn the appearance of object and attribute classes as well as their association on each object instance. Once learned, given an image, our model can be deployed to tackle a number of vision problems in a joint and coherent manner, including recognising objects in the scene (automatic object annotation), describing objects using their attributes (attribute prediction and association), and localising and delineating the objects (object detection and semantic segmentation). This is achieved by developing a novel Weakly Supervised Markov Random Field Stacked Indian Buffet Process (WS-MRF-SIBP) that models objects and attributes as latent factors and explicitly captures their correlations within and across superpixels. Extensive experiments on benchmark datasets demonstrate that our weakly supervised model significantly outperforms weakly supervised alternatives and is often comparable with existing strongly supervised models on a variety of tasks including semantic segmentation, automatic image annotation and retrieval based on object-attribute associations.
机译:我们建议使用非参数贝叶斯模型对复杂的视觉场景进行建模,该模型是从在媒体共享网站(例如Flickr)上丰富的弱标记图像中学到的。给定对象和属性之间没有位置或关联的弱图像级注释,我们的模型旨在学习对象和属性类的外观以及它们在每个对象实例上的关联。获知图像后,我们的模型便可以部署为以联合和连贯的方式解决许多视觉问题,包括识别场景中的对象(自动对象注释),使用其属性描述对象(属性预测和关联),以及定位和描绘对象(对象检测和语义分割)。这是通过开发新颖的弱监督马尔可夫随机场堆叠印度自助餐过程(WS-MRF-SIBP)来实现的,该过程将对象和属性建模为潜在因素,并明确捕获超像素内和跨超像素的相关性。在基准数据集上进行的大量实验表明,我们的弱监督模型明显优于弱监督替代方案,并且在各种任务上(包括语义分割,自动图像注释和基于对象-属性关联的检索)通常可以与现有的强监督模型相提并论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号