首页> 外文OA文献 >A Comparative Study of Breast Cancer Diagnosis based on Neural Network Ensemble via Improved Training Algorithms
【2h】

A Comparative Study of Breast Cancer Diagnosis based on Neural Network Ensemble via Improved Training Algorithms

机译:基于改进训练算法的神经网络集成乳腺癌诊断对比研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Breast cancer is one of the most common types of cancer in women all over the world. Early diagnosis of this kind of cancer can significantly increase the chances of long-term survival. Since diagnosis of breast cancer is a complex problem, neural network (NN) approaches have been used as a promising solution. Considering the low speed of the back-propagation (BP) algorithm to train a feed-forward NN, we consider a number of improved NN trainings for the Wisconsin breast cancer dataset: BP with momentum, BP with adaptive learning rate, BP with adaptive learning rate and momentum, Polak–Ribikre conjugate gradient algorithm (CGA), Fletcher-Reeves CGA, Powell–Beale CGA, scaled CGA, resilient BP (RBP), one-step secant and quasi-Newton methods. An NN ensemble, which is a learning paradigm to combine a number of NN outputs, is used to improve the accuracy of the classification task. Results demonstrate that NN ensemble-based classification methods have better performance than NN-based algorithms. The highest overall average accuracy is 97.68% obtained by NN ensemble trained by RBP for 50%-50% training-test evaluation method.
机译:乳腺癌是全世界女性中最常见的癌症类型之一。这类癌症的早期诊断可以显着增加长期生存的机会。由于乳腺癌的诊断是一个复杂的问题,因此神经网络(NN)方法已被用作有前途的解决方案。考虑到反向传播(BP)算法训练前馈NN的速度较慢,我们考虑了威斯康星州乳腺癌数据集的许多改进的NN训练:具有动量的BP,具有自适应学习率的BP,具有自适应学习的BP速率和动量,Polak–Ribikre共轭梯度算法(CGA),Fletcher-Reeves CGA,Powell-Beale CGA,定标CGA,弹性BP(RBP),一步割线和拟牛顿法。 NN集成是一种学习范例,用于组合多个NN输出,可用于提高分类任务的准确性。结果表明,基于神经网络集成的分类方法比基于神经网络的算法具有更好的性能。通过RBP训练的NN集成以50%-50%的训练测试评估方法获得的最高总体平均准确度为97.68%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号