首页> 外文OA文献 >Integrating piecewise linear representation and ensemble neural network for stock price prediction
【2h】

Integrating piecewise linear representation and ensemble neural network for stock price prediction

机译:将分段线性表示和集合神经网络结合起来进行股价预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stock Prices are considered to be very dynamic and susceptible to quick changes because of the underlying nature of the financial domain, and in part because of the interchange between known parameters and unknown factors. Of late, several researchers have used Piecewise Linear Representation (PLR) to predict the stock market pricing. However, some improvements are needed to avoid the appropriate threshold of the trading decision, choosing the input index as well as improving the overall performance. In this paper, several techniques of data mining are discussed and applied for predicting price movement. For example, a new technique named Local Saturation Method (LSM) has been used to find the PLR; the weighted moving average has been applied to find recent price moves; the Shannon entropy has been used for measuring the data set complexity or nature; an intelligent system is used to select the new and important technical indexes; and finally, Ensemble Neural Networks (ENN) have been used in order to improve the overall performance. Our method has been tested by thirty problems, including up trade, down trade and steady state features. By applying all those techniques, the proposed algorithm shows good predictions with a hit rate of about 60 percent.
机译:由于金融领域的内在本质,并且部分由于已知参数与未知因素之间的互换,股票价格被认为是非常动态的并且容易发生快速变化。最近,一些研究人员使用分段线性表示法(PLR)来预测股票市场的定价。但是,需要进行一些改进以避免适当的交易决策阈值,选择输入指标以及改善整体绩效。本文讨论了几种数据挖掘技术,并将其应用于预测价格走势。例如,一种名为局部饱和法(LSM)的新技术已被用于查找PLR;加权移动平均线已用于查找最近的价格移动; Shannon熵已用于测量数据集的复杂性或性质;使用智能系统选择新的重要技术指标;最后,为了改善整体性能,使用了集成神经网络(ENN)。我们的方法已经过三十个问题的测试,其中包括向上交易,向下交易和稳态特征。通过应用所有这些技术,提出的算法显示出良好的预测,命中率约为60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号