首页> 外文OA文献 >サイレンシング領域境界形成に関与するヒストン修飾酵素複合体因子のSgf73 の解析、倍加半数体菜種集団における高エルガ酸産生遺伝子の解析
【2h】

サイレンシング領域境界形成に関与するヒストン修飾酵素複合体因子のSgf73 の解析、倍加半数体菜種集団における高エルガ酸産生遺伝子の解析

机译:组蛋白修饰酶复合因子sgf73参与沉默区域边界形成的分析,双倍体单倍体油菜种群中高产酸基因的分析

摘要

The eukaryotic nucleus is organized into structurally and functionally distinct domains that are often located in close proximity to one another. The euchromatin form of DNA is transcriptionally active and maintains an open chromatin structure via the actions of promoter, enhancers, and locus control region sequences. By contrast, heterochromatin is composed of a condensed chromatin structure that is generally transcriptionally repressed. Chromatin barriers prevent silenced chromatin domains from spreading into active domains. In S. cerevisiae telomeres, HML, HMR and ribosomal DNA (rDNA) are transcriptionally silent regions. The Sir (Silent Information Regulator) protein complex, consisting of Sir2, Sir3 and Sir4, plays a key role in transcriptional repression. The regulation of gene expression is crucial for proper development and survival of all organisms; chromatin structure is a central regulator of gene expression. Histone modifications, such as acetylationand ubiquitination, play a crucial role to facilitate a number of cellular events, including gene regulation. Histones acetylation is largely associated with open chromatin structure to support the entry of transcriptional machinery to genomic loci for activation, whereas ubiquitination of histone has been linked to gene activation and repression both. The budding yeast Saccharomyces cerevisiae contains active and inactive chromatin separated by boundary domains. Previously, we used genome-wide screening to identify 55 boundary-related genes. In this study, firstly I have focused on Sgf73, a boundary protein that is a component of the SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) complexes. These complexes have histone acetyltransferase (HAT) and histone deubiquitinase activity, and Sgf73 is one of the factors necessary to anchor the deubiquitination module. Domain analysis of Sgf73 was performed and the minimum region (373–402 aa) essential for boundary function was identified. This minimum region does not include the domain involved in anchoring the deubiquitination module, suggesting that the histone deubiquitinase activity of Sgf73 is not important for its boundary function. Next, Sgf73-mediated boundary function was analyzed in disruption strains in which different protein subunits of the SAGA/SLIK/ADA complexes were deleted. Deletion of ada2, ada3 or gcn5 (a HAT module component) caused complete loss of the boundary function of Sgf73. The importance of SAGA or SLIK complex binding to the boundary function of Sgf73 was also analyzed. Western blot analysis detected both the full-length and truncated forms of Spt7, suggesting that SAGA and SLIK complex formation is important for the boundary function of Sgf73.Secondly, in the present study, 90 DH lines derived from F1 plants of the cross Ld-LPAAT- Bn-fae1 over expressing transgenic rapeseed plants with high erucic acid and low polyunsaturated fatty acid (HELP) plant material were analyzed. Erucic acid (22:1) is a major component in the seed oil of wild type rapeseed. But this erucic acid is toxic for consumption. However, from the last decade, high erucic acid rapeseed (HEAR) cultivars have regained interest for industrial purposes. Here, I study the inheritance of erucic acid content in the segregating transgenic DH population and evaluate the variation and heritability for different phenological and quality traits such as: days to flowering and maturity, oil, protein and different fatty acids content in the DH population. Large variation was found for erucic acid content in DH population varied from 34.6% to 59.1%. Genetic variance components were large and significant for all traits. The segregation pattern of erucic acid content showed 1:3:3:1 separation suggesting erucic acid content was controlled by the alleles of three loci in the DH population. Transgene Ld-LPAAT-Bn-fae1 showed negative effect (-2.7%) to change the erucic acid content in the DH population. This result suggesting that there was no effect of Bn-fae1 for increasing the erucic acid content or the absence of β-ketoacyl-CoA synthase (KCS) activities required for initiating fatty acid elongation from 18:1 to 22:1. On the other hand PUFA (Poly Unsaturated Fatty Acid) had effect to increase the erucic acid content up to 3.7%. In presence of transgene Ld-LPAAT showed limited activities to produce trierucin (8% instead of probable 20%) in the selected best DH line. The selected DH lines showedincrease in erucic acid content (59.1%) compared to parental lines TNKAT (46.1%) and HELP (50.4%). Highest amount of erucic acid might be achieved due to introgression of PUFA alleles with those of the strong alleles of the indigenous erucic acid loci, because transgene showed negative effect on erucic acid. There was no adverse effect of the higherucic content on other phenological traits in the selected best DH line. In conclusion the result of this study showed that erucic acid is inherited by alleles of three loci. The variation of erucic acid has been achieved due to the combination of alleles of two indigenous erucic acid loci with alleles of PUFA. Low in PUFA content could contribute markedly to increase erucic acid than the transgene construct present in DH lines. The selected DH line having 59% erucic acid could be source material for crossing to other high erucic acid transgenic line to increase the erucic acid content
机译:真核细胞被组织成结构上和功能上截然不同的域,这些域通常彼此紧邻。 DNA的常染色质形式具有转录活性,并通过启动子,增强子和基因座控制区序列的作用保持开放的染色质结构。相反,异染色质由通常被转录抑制的浓缩染色质结构组成。染色质屏障可防止沉默的染色质域扩散到活性域中。在酿酒酵母端粒中,HML,HMR和核糖体DNA(rDNA)是转录沉默区域。 Sir(沉默信息调节剂)蛋白复合物由Sir2,Sir3和Sir4组成,在转录抑制中起关键作用。基因表达的调节对于所有生物的正常发育和生存至关重要。染色质结构是基因表达的中央调节器。组蛋白修饰(例如乙酰化和泛素化)在促进许多细胞事件(包括基因调控)中起着至关重要的作用。组蛋白的乙酰化主要与开放的染色质结构有关,以支持转录机制进入基因组基因座进行激活,而组蛋白的泛素化与基因激活和抑制都相关。出芽的酿酒酵母包含通过边界域分隔的活性和非活性染色质。以前,我们使用全基因组筛选来鉴定55个边界相关基因。在这项研究中,我首先研究了Sgf73,这是一种边界蛋白,是SAGA(Spt-Ada-Gcn5乙酰转移酶)和SLIK(SAGA样)复合物的组成部分。这些复合物具有组蛋白乙酰转移酶(HAT)和组蛋白去泛素酶活性,Sgf73是锚定去泛素化模块所必需的因素之一。进行了Sgf73的域分析,并确定了边界功能所必需的最小区域(373-402aa)。该最小区域不包括锚定去泛素化模块所涉及的结构域,表明Sgf73的组蛋白去泛素化酶活性对其边界功能并不重要。接下来,在破坏菌株中分析了Sgf73介导的边界功能,其中破坏了SAGA / SLIK / ADA复合物的不同蛋白质亚基。删除ada2,ada3或gcn5(HAT模块组件)会导致Sgf73的边界函数完全丢失。还分析了SAGA或SLIK复合物结合到Sgf73的边界功能的重要性。蛋白质印迹分析同时检测到了Spt7的全长和截短形式,这表明SAGA和SLIK复合物的形成对于Sgf73的边界功能很重要。其次,在本研究中,有90条DH系来源于Ld-杂交的F1植物。分析了具有高芥酸和低多不饱和脂肪酸(HELP)植物材料的过表达转基因油菜植物的LPAAT-Bn-fae1。芥酸(22:1)是野生型菜籽油中的主要成分。但是这种芥酸对食用有毒。但是,从最近的十年开始,高芥酸油菜籽(HEAR)品种重新引起了人们对工业用途的兴趣。在这里,我研究了分离的转基因DH群体中芥酸含量的遗传,并评估了不同物候和品质特征的变异性和遗传力,例如:DH群体的开花和成熟天数,油,蛋白质和不同脂肪酸含量。 DH人群中的芥酸含量变化很大,从34.6%到59.1%不等。遗传方差分量很大,并且对所有性状都具有重要意义。芥酸含量的分离模式显示出1:3:3:1的分离,表明芥酸含量受DH群体中三个基因座的等位基因控制。转基因Ld-LPAAT-Bn-fae1显示出负面影响(-2.7%),改变了DH群体中的芥酸含量。该结果表明,Bn-fae1对增加芥酸含量没有影响,也没有启动脂肪酸从18:1延伸至22:1所需的β-酮酰基-CoA合酶(KCS)活性的作用。另一方面,PUFA(多不饱和脂肪酸)具有使芥酸含量增加至3.7%的作用。在存在转基因的情况下,Ld-LPAAT在选定的最佳DH品系中显示出产生甘油三酯的活性有限(8%代替了可能的20%)。与亲本系TNKAT(46.1%)和HELP(50.4%)相比,所选DH系的芥酸含量增加(59.1%)。由于PUFA等位基因与本地芥酸基因座的强等位基因的基因渗入,可能获得最高含量的芥酸,因为转基因对芥酸显示出负面影响。在选定的最佳DH品系中,较高的核酸含量对其他物候性状没有不利影响。总之,这项研究的结果表明芥酸是由三个基因座的等位基因遗传的。由于两个本地芥酸位点的等位基因与PUFA等位基因的结合,实现了芥酸的变异。与DH系中存在的转基因构建体相比,PUFA含量低可能显着增加了芥酸。所选择的具有59%芥酸的DH品系可能是与其他高芥酸转基因品系杂交以增加芥酸含量的原料

著录项

  • 作者

    Gayatri Goswami;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号