首页> 外文OA文献 >Parametric time-frequency analysis for discrimination of non-stationary signals = Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias
【2h】

Parametric time-frequency analysis for discrimination of non-stationary signals = Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias

机译:用于区分非平稳信号的参数时频分析= 非平稳信号鉴别的参数时频分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-frequency representations, and the second, featureudselection and extraction based on time�frequency representations and time-varying data. In this study many advantages of non-stationary signal analysis using parametric methodology will be made evident. Among them it will be found that by means of these models it is possible to determine how signal�s structure changes along timeudand analogously, to determine how the frequency content of a signal changes. The effectiveness of this methodology depends on three main factors, first, the choice of the model structure, which in the case of TVAR modeling would be the problem to find the order of AR model, second, estimation of the model parameters and third, selection the structure of temporal change that is imposed on the dynamicsudof time-variant parameters. In this aspect, a revision and evaluation of different state of the art methodologies for model structure selection, estimation of TVAR parameters and temporal structures is made. It was found that the performance of parametric methodology depends directly on these three factors; however, the main influencing factor is the structure of temporal change imposed on the estimator and how it couples with the dynamics of a time-varying signal. The second addressed problem is how to use these time varying features (matricial features) to train classifiers. Features estimated with parametric models yield a complete representation of signal�s dynamics at the cost of large dimensionality and redundancy. Thus, a review of feature extraction methods devised for time-varyingudand matricial data is carried out. Also, relevance analysis is generalized for the case of matricial data.
机译:摘要:在此硕士学位论文中,探讨了使用时变参数建模和时频分析对非平稳信号进行识别的方法。这项工作包括两部分,第一部分是通过参数建模和参数时频表示来获得非平稳信号的表示,第二部分是基于时频表示和时变数据的特征非选择和提取。在这项研究中,使用参数方法进行非平稳信号分析的许多优势将变得显而易见。其中将发现,借助这些模型,可以确定信号的结构如何随时间 ud和类似地变化,从而确定信号的频率内容如何变化。该方法的有效性取决于三个主要因素,首先是模型结构的选择,在TVAR建模的情况下,这将是找到AR模型顺序的问题,其次是模型参数的估计,其次是选择施加于动态 udof时变参数的时间变化结构。在这方面,对模型结构选择,TVAR参数估计和时间结构的不同技术水平的方法进行了修订和评估。发现参数方法的性能直接取决于这三个因素。但是,主要的影响因素是施加在估算器上的时间变化的结构以及它如何与时变信号的动力学耦合。第二个解决的问题是如何使用这些时变特征(矩阵特征)来训练分类器。用参数模型估计的特征以大尺寸和冗余为代价,可以完整地表示信号的动态特性。因此,对为时变 udand矩阵数据设计的特征提取方法进行了综述。而且,针对矩阵数据的情况进行了相关性分析。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号