首页> 外文OA文献 >Gas plume species identification in airborne LWIR imagery using constrained stepwise regression analyses
【2h】

Gas plume species identification in airborne LWIR imagery using constrained stepwise regression analyses

机译:利用约束逐步回归分析识别机载LWIR图像中的气体羽流物种

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identification of constituent gases in effluent plumes is performed using linear least-squares regression techniques. Airborne thermal hyperspectral imagery is used for this study. Synthetic imagery is employed as the test-case for algorithm development. Synthetic images are generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model. The use of synthetic data provides a direct measure of the success of the algorithm through the comparison with truth map outputs. In image test-cases, plumes emanating from factory stacks will have been identified using a separate detection algorithm. The gas identification algorithm being developed in this work is performed only on pixels having been determined to contain the plume. Constrained stepwise linear regression is used in this study. Results indicate that the ability of the algorithm to correctly identify plume gases is directly related to the concentration of the gas. Previous concerns that the algorithm is hindered by spectral overlap were eliminated through the use of constraints on the regression.
机译:使用线性最小二乘回归技术进行废水羽流中成分气体的鉴定。航空热成像光谱用于这项研究。合成图像被用作算法开发的测试用例。合成图像由数字成像和遥感图像生成(DIRSIG)模型生成。通过与真值图输出进行比较,使用合成数据可直接衡量算法是否成功。在图像测试用例中,将使用单独的检测算法来识别从工厂烟囱中散发出来的烟羽。在这项工作中开发的气体识别算法仅在已确定包含烟羽的像素上执行。本研究使用约束逐步线性回归。结果表明,算法正确识别烟气的能力与气体浓度直接相关。通过使用回归约束,消除了先前对于算法受光谱重叠影响的担忧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号