In this paper we consider the problem of parallel mining of association rules on a shared-memory multiprocessor system. Two efficient algorithms PSM and HSM have been proposed. PSM adopted two powerful candidate set pruning techniques distributed pruning and global pruning to reduce the size of candidates. HSM further utilized an I/O reduction strategy to enhance its performance. We have implemented PSM and HSM on a SGI Power Challenge parallel machine. The performance studies show that PSM and HSM out perform CD-SM, which is a shared-memory parallel version of the popular Apriori algorithm.
展开▼
机译:在本文中,我们考虑在共享内存多处理器系统上并行挖掘关联规则的问题。已经提出了两种有效的算法PSM和HSM。 PSM采用了两种强大的候选集修剪技术:分布式修剪和全局修剪,以减少候选对象的大小。 HSM进一步利用了I / O减少策略来增强其性能。我们已经在SGI Power Challenge并行计算机上实现了PSM和HSM。性能研究表明,PSM和HSM的性能优于CD-SM,这是流行的Apriori算法的共享内存并行版本。
展开▼