首页> 外文OA文献 >Air-spaced GaN nanopillar photonic band gap structures patterned by nanosphere lithography
【2h】

Air-spaced GaN nanopillar photonic band gap structures patterned by nanosphere lithography

机译:通过纳米球光刻图案化的空气间隔GaN纳米柱光子带隙结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report on the fabrication of ordered hexagonal arrays of air-spaced GaN nanopillars by nanosphere lithography. A self-assembled two-dimensional silica nanosphere mask was initially formed by spin-coating. Prior to pattern transfer to the GaN substrate, a silica-selective dry etch recipe was employed to reduce the dimensions of the nanospheres, without shifting their equilibrium positions. This process step was crucial to be formation of air-spaced hexagonal arrays of nanospheres, as opposed to closed-packed arrays normally achieved by nanosphere lithography. This pattern is then transferred to the wafer to form air-spaced nanopillars. By introducing air gaps between pillars, a photonic band gap (PBG) in the visible region can be opened up, which is usually nonexistent in closed-packed nanopillar arrays. The PBG structures were designed using the plane wave expansion algorithm for band structure computations. The existence and positions of band gaps have been verified through optical transmittance spectroscopy, which correlated well with predictions from simulations. From photoluminescence (PL) spectroscopy, a fourfold increase in PL intensity was observed and compared to an as-grown sample, demonstrating the effectiveness of well-designed self-assembled PBG structures for suppressing undesired optical guiding mode via PBG and for promoting light extraction. The effects of defects in the nanopillar array on the optical properties are also critically assessed. © 2011 American Institute of Physics.
机译:我们通过纳米球光刻技术报告了有序六边形排列的空的GaN纳米柱的六角形阵列的制造。首先通过旋涂形成自组装的二维二氧化硅纳米球掩模。在将图案转移到GaN衬底之前,采用二氧化硅选择性干法刻蚀配方来减小纳米球的尺寸,而不改变其平衡位置。与通常通过纳米球光刻实现的密排阵列相反,该工艺步骤对于形成纳米球的空六边形六边形阵列至关重要。然后将该图案转移到晶片上以形成空气间隔的纳米柱。通过在柱子之间引入气隙,可以打开可见区域的光子带隙(PBG),这在封闭堆积的纳米柱阵列中通常不存在。 PBG结构是使用平面波扩展算法设计的,用于带结构计算。带隙的存在和位置已经通过光学透射光谱法进行了验证,该光谱与模拟的预测很好地相关。从光致发光(PL)光谱中,观察到PL强度增加了四倍,并且与生长中的样品相比,这证明了精心设计的自组装PBG结构可有效地抑制通过PBG产生的不良光导模式并促进光提取。还严格评估了纳米柱阵列中的缺陷对光学性能的影响。 ©2011美国物理研究所。

著录项

  • 作者

    Li KH; Choi HW;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号