首页> 外文OA文献 >Crackle detection and classification based on matched waveletanalysis
【2h】

Crackle detection and classification based on matched waveletanalysis

机译:基于匹配小波分析的裂纹检测与分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crackles have an explosive pattern in the time domain, with a rapid onset and a short duration. The timing, repeatability and shape of crackles are important parameters for diagnosis. Therefore, automatic detection of crackles and their classification have important clinical value. Since crackles have a general characteristic shape, it is obvious that wavelet analysis can be exploited to detect crackles and to classify them. In this paper, we present a new method for crackle detection which is based on a `matched' wavelet transform. We first model crackles as a mathematical function. Then we design a matched wavelet based on this model. Applying a soft threshold to the results of the continuous wavelet transform to suppress noise further, the optimal scale can be obtained. Crackles can be detected based on the envelope of the signal at an optimal scale, and can be classified based on the energy distribution with scale. Theory, methods and experimental results are given in detail in this paper.
机译:爆裂声在时域上具有爆炸性模式,起效快且持续时间短。裂纹的时间,可重复性和形状是诊断的重要参数。因此,裂纹的自动检测及其分类具有重要的临床价值。由于裂纹具有一般的特征形状,因此很明显,可以利用小波分析来检测裂纹并对其进行分类。在本文中,我们提出了一种基于“匹配”小波变换的裂纹检测新方法。我们首先将裂纹作为数学函数进行建模。然后,基于该模型设计匹配小波。将软阈值应用于连续小波变换的结果以进一步抑制噪声,可以获得最佳比例。裂纹可以基于信号的包络以最佳比例进行检测,并且可以基于具有比例的能量分布进行分类。本文详细给出了理论,方法和实验结果。

著录项

  • 作者

    Du M; Chan FHY; Lam FK; Sun J;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号