首页> 外文OA文献 >A study of network-based kernel methods on protein-protein interaction for protein functions prediction
【2h】

A study of network-based kernel methods on protein-protein interaction for protein functions prediction

机译:基于网络的蛋白质 - 蛋白质相互作用蛋白质功能预测方法的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting protein functions is an important issue in the post-genomic era. In this paper, we studied several network-based kernels including Local Linear Embedding (LLE) kernel method, Diffusion kernel and Laplacian Kernel to uncover the relationship between proteins functions and Protein-Protein Interactions (PPI). We first construct kernels based on PPI networks, we then apply Support Vector Machine (SVM) techniques to classify proteins into different functional groups. 5-fold cross validation is then applied to the selected 359 GO terms to compare the performance of different kernels and guilt-by-association methods including neighbor counting methods and Chisquare methods. Finally we made predictions of functions of some unknown genes and verified the preciseness of our prediction in part by the information of other data source.
机译:预测蛋白质功能是后基因组时代的重要问题。在本文中,我们研究了几种基于网络的内核,包括局部线性嵌入(LLE)内核方法,扩散内核和拉普拉斯内核,以揭示蛋白质功能与蛋白质-蛋白质相互作用(PPI)之间的关系。我们首先基于PPI网络构建内核,然后应用支持向量机(SVM)技术将蛋白质分为不同的功能组。然后对选定的359个GO项进行5倍交叉验证,以比较不同内核的性能以及包括邻居计数法和Chisquare方法的内法。最后,我们对一些未知基因的功能进行了预测,并部分地通过其他数据源的信息验证了我们预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号