In this paper, we develop methods for estimating a survival function with censoring indicators missing at random. The resulting methods lead to the use of imputation and inverse probability weighting. We give several asymptotically efficient PL estimators. All the estimators are proved to be strongly uniformly consistent and weakly convergent to a Gaussian process. Further, it is shown that these estimators are asymptotically efficient. A simulation study was carried out to evaluate the finite sample performances of the proposed estimators and compare the proposed estimators with van der Laan and McKeague's (1998) estimator under missing at random (MAR) and missing completely at random (MCAR) assumptions, respectively.
展开▼
机译:在本文中,我们开发了一种评估带有随机缺失的检查指标的生存函数的方法。由此产生的方法导致使用归因和逆概率加权。我们给出了几种渐近有效的PL估计器。事实证明,所有估计量都是一致强一致的,并且弱收敛于高斯过程。此外,表明这些估计量是渐近有效的。进行了仿真研究,以评估拟议估计量的有限样本性能,并将拟定估计量分别与在随机假设(MAR)和完全随机假设(MCAR)假设下的van der Laan和McKeague(1998)估计量进行比较。
展开▼