首页> 外文OA文献 >A novel ANN fault diagnosis system for power systems using dual GA loops in ANN training
【2h】

A novel ANN fault diagnosis system for power systems using dual GA loops in ANN training

机译:基于神经网络训练的双Ga循环电力系统神经网络故障诊断系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault diagnosis is of great importance to the rapid restoration of power systems. Many techniques have been employed to solve this problem. In this paper, a novel Genetic Algorithm (GA) based neural network for fault diagnosis in power systems is suggested, which adopts three-layer feed-forward neural network. Dual GA loops are applied in order to optimize the neural network topology and the connection weights. The first GA-loop is for structure optimization and the second one for connection weight optimization. Jointly they search the global optimal neural network solution for fault diagnosis. The formulation and the corresponding computer flow chart are presented in detail in the paper. Computer test results in a test power system indicate that the proposed GA-based neural network fault diagnosis system works well and is superior as compared with the conventional Back-Propagation (BP) neural network.
机译:故障诊断对电力系统的快速恢复至关重要。已经采用许多技术来解决这个问题。本文提出了一种基于遗传算法的神经网络,用于电力系统的故障诊断,它采用三层前馈神经网络。应用双GA循环以优化神经网络拓扑和连接权重。第一个GA回路用于结构优化,第二个GA回路用于连接权重优化。他们共同搜索用于故障诊断的全局最优神经网络解决方案。本文详细介绍了该公式和相应的计算机流程图。在测试电源系统中的计算机测试结果表明,与常规的反向传播(BP)神经网络相比,所提出的基于GA的神经网络故障诊断系统运行良好,并且性能优越。

著录项

  • 作者

    Wu FF; Shen CM; Ni YX; Bi TS;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号