首页> 外文OA文献 >Design Of An Efficient Hyper-heuristic Algorithm Cma-vns For Combinatorial Black-box Optimization Problems
【2h】

Design Of An Efficient Hyper-heuristic Algorithm Cma-vns For Combinatorial Black-box Optimization Problems

机译:组合黑盒优化问题的高效超启发式算法Cma-vns设计

摘要

We present a hyper-heuristic algorithm for solving combinatorial black-box optimization problems. The algorithm named CMA-VNS stands for a hybrid of variants of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Variable Neighborhood Search (VNS). The framework design and the design profiles of variants of CMA-VNS are introduced to enhance the intensification of searching for conventional CMA-ES solvers. We explain the parameter configuration details, the heuristic profile selection, and the rationale of incorporating machine learning methods during the study. Experimental tests and the results of the first and the second Combinatorial Black-Box Optimization Competitions (CB-BOC 2015, 2016) confirmed that CMA-VNS is a competitive hyper-heuristic algorithm.
机译:我们提出了一种超启发式算法来解决组合黑盒优化问题。名为CMA-VNS的算法代表协方差矩阵适应进化策略(CMA-ES)和可变邻域搜索(VNS)的变体的混合体。介绍了CMA-VNS变体的框架设计和设计概况,以增强寻找常规CMA-ES求解器的强度。我们解释了参数配置的详细信息,启发式配置文件的选择,以及在研究过程中纳入机器学习方法的原理。实验测试以及第一届和第二届组合黑盒优化竞赛(CB-BOC 2015,2016)的结果证实了CMA-VNS是一种竞争性的超启发式算法。

著录项

  • 作者

    Xue F; Shen G;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号