首页> 外文OA文献 >Novel method for patterned fabric inspection using Bollinger bands
【2h】

Novel method for patterned fabric inspection using Bollinger bands

机译:使用布林带进行图案织物检测的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a new application of Bollinger bands for defect detection of patterned fabric. A literature review on previous designed methods for patterned fabric defect detection will be depicted. For data analysis, Bollinger bands are calculated based on standard deviation and are originally used in the financial market as an oversold or overbought indicator for stock. The Bollinger bands method is an efficient, fast and shift-invariant approach, that can segment out the defective regions on the patterned fabric with clear and crystal clean images. The new approach is immune of the alignment problem that often happens in previous methods. In this paper, the upper band and lower band of Bollinger bands, which are sensitive to any subtle change in the input data, have been developed for use to indicate the defective areas in patterned fabric. The number of standard deviation and length of time of Bollinger bands can be easily determined to obtain excellent detection results. The proposed method has been evaluated on three different patterned fabrics. In total, 165 defect-free and 171 defective images have been used in the evaluation, where 98.59% accuracy on inspection has been achieved. © 2006 Society of Photo-Optical Instrumentation Engineers.
机译:本文介绍了布林带在图案织物缺陷检测中的新应用。将描述有关图案织物缺陷检测的先前设计方法的文献综述。为了进行数据分析,布林带根据标准差计算,最初在金融市场中用作股票的超卖或超买指标。布林带法是一种高效,快速且不变位移的方法,可以用清晰清晰的图像分割出图案化织物上的缺陷区域。新方法不受以前方法中经常发生的对齐问题的影响。在本文中,对输入数据中任何细微变化敏感的布林带的上,下带已被开发出来,用于指示图案化织物中的缺陷区域。可以轻松确定布林带的标准偏差数和时间长度,从而获得出色的检测结果。所提出的方法已经在三种不同的图案织物上进行了评估。评估中总共使用了165个无缺陷图像和171个缺陷图像,其中检查精度达到98.59%。 ©2006光电仪器工程师协会。

著录项

  • 作者

    Ngan HYT; Pang GKH;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号