首页> 外文OA文献 >A noniterative sampling method for computing posteriors in the structure of EM-type algorithms
【2h】

A noniterative sampling method for computing posteriors in the structure of EM-type algorithms

机译:一种计算Em型算法结构中后验的非迭代抽样方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a noniterative sampling approach by combining the inverse Bayes formulae (IBF), sampling/importance resampling and posterior mode estimates from the Expectation/Maximization (EM) algorithm to obtain an i.i.d. sample approximately from the posterior distribution for problems where the EM-type algorithms apply. The IBF shows that the posterior is proportional to the ratio of two conditional distributions and its numerator provides a natural class of built-in importance sampling functions (ISFs) directly from the model specification. Given that the posterior mode by an EM-type algorithm is relatively easy to obtain, a best ISF can be identified by using that posterior mode, which results in a large overlap area under the target density and the ISF. We show why this procedure works theoretically. Therefore, the proposed method provides a novel alternative to perfect sampling and eliminates the convergence problems of Markov chain Monte Carlo methods. We first illustrate the method with a proof-of-principle example and then apply the method to hierarchical (or mixed-effects) models for longitudinal data. We conclude with a discussion.
机译:我们通过结合反贝叶斯公式(IBF),采样/重要性重采样和期望/最大化(EM)算法的后验模式估计来提出非迭代采样方法,以获得i.i.d.对于EM型算法适用的问题,大约从后验分布中抽样。 IBF表明,后验与两个条件分布的比率成正比,并且其分子直接从模型规范中提供了自然的内置重要性采样函数(ISF)类。鉴于通过EM型算法获得的后验模式相对容易获得,因此使用该后验模式可以确定最佳的ISF,从而导致目标密度和ISF下的重叠区域较大。我们说明了为什么该程序理论上可行。因此,该方法为完善采样提供了一种新颖的选择,并消除了马尔可夫链蒙特卡罗方法的收敛性问题。我们首先用原理证明示例说明该方法,然后将该方法应用于纵向数据的分层(或混合效应)模型。我们以讨论结束。

著录项

  • 作者

    Tian GL; Tan M; Ng KW;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号