首页> 外文OA文献 >Single-trial laser-evoked potentials feature extraction for prediction of pain perception
【2h】

Single-trial laser-evoked potentials feature extraction for prediction of pain perception

机译:单试验激光诱发电位特征提取用于预测疼痛感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
机译:疼痛是一种高度主观的经验,因此对疼痛感知的客观评估对于基础和临床应用都将非常重要。本研究的目的是开发一种新方法,从单次试验的激光诱发电位(LEP)中提取与疼痛相关的特征,以对疼痛感知进行分类。单次试验LEP特征提取方法结合了使用通用空间模式(CSP)和多元线性回归(MLR)的空间过滤。 CSP方法可以有效地将激光诱发的EEG反应与正在进行的EEG活动区分开,而MLR能够根据单次试验LEP波形自动估算N2和P2的振幅和延迟。提取的单次试验LEP特征在朴素贝叶斯分类器中用于对受试者感觉到的不同疼痛程度进行分类。实验结果表明,提出的单次尝试性LEP特征提取方法可以有效地提取与疼痛相关的LEP特征,从而实现较高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号