首页> 外文OA文献 >Joint unscented kalman filter for dual estimation in a bifilar pendulum for a small UAV
【2h】

Joint unscented kalman filter for dual estimation in a bifilar pendulum for a small UAV

机译:Joint unscented kalman filter for dual estimation in a bifilar pendulum for a small UaV

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It has always been difficult to accurately estimate the moment of inertia of an object, e.g. an unmanned aerial vehicle (UAV). Whilst various offline estimation methods exist to allow accurate parametric estimation by minimizing an error cost function, they require large memory consumption, high computational effort, and a long convergence time. The initial estimate's accuracy is also vital in attaining convergence. In this paper, a new real time solution to the model identification problem is provided with the use of a Joint Unscented Kalman Filter for dual estimation. The identification procedures can be easily implemented using a microcontroller, a gyroscope sensor, and a simple bifilar pendulum setup. Accuracy, robustness, and convergence speed are achieved.
机译:一直很难精确地估计物体的惯性矩,例如,惯性矩。无人机(UAV)。尽管存在各种离线估计方法以通过最小化误差成本函数来进行准确的参数估计,但它们需要大量的内存消耗,高计算量和长收敛时间。初始估计的准确性对于实现收敛也至关重要。在本文中,使用联合无味卡尔曼滤波器进行双重估计,为模型识别问题提供了一种新的实时解决方案。可以使用微控制器,陀螺仪传感器和简单的双线摆装置轻松实现识别过程。实现了准确性,鲁棒性和收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号