首页> 外文OA文献 >An enhanced ant colony optimization approach for integrated process planning and scheduling
【2h】

An enhanced ant colony optimization approach for integrated process planning and scheduling

机译:用于集成过程规划和调度的增强蚁群优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An enhanced ant colony optimization (eACO) meta-heuristics is proposed in this paper to accomplish the integrated process planning and scheduling (IPPS) in the jobshop environments. The IPPS problem is graphically formulated to implement the ACO algorithm. In accordance with the characteristics of the IPPS problem, the mechanism of eACO has been enhanced with several modifications, including quantification of convergence level, introduction of pheromone on nodes, new strategy of determining heuristic desirability and directive pheromone deposit strategy. Experiments are conducted to evaluate the approach, while makespan and CPU time are used as measurements. Encouraging results can be seen when comparing to other IPPS approaches based on evolutionary algorithms. © 2013 International Institute for Innovation, Industrial Engineering and Entrepreneurship - I4e2.
机译:本文提出了一种改进的蚁群优化(eACO)元启发式算法,以在车间环境中完成集成过程计划和调度(IPPS)。 IPPS问题以图形方式制定以实现ACO算法。根据IPPS问题的特点,对eACO的机制进行了一些修改,包括收敛级别的量化,在节点上引入信息素,确定启发式可取性的新策略和指令信息素沉积策略。进行实验以评估该方法,同时使用制造时间和CPU时间作为度量。与其他基于进化算法的IPPS方法相比,可以看到令人鼓舞的结果。 ©2013国际创新,工业工程和创业学院-I4e2。

著录项

  • 作者

    Zhang S; Wong TN;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号