首页> 外文OA文献 >Fabric defect classification using wavelet frames and minimum classification error training
【2h】

Fabric defect classification using wavelet frames and minimum classification error training

机译:基于小波框架和最小分类误差训练的织物疵点分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a new method for fabric defect classification by incorporating the design of a wavelet frames based feature extractor with the design of an Euclidean distance based classifier. Channel variances at the outputs of the wavelet frame decomposition are used to characterize each nonoverlapping window of the fabric image. A feature extractor using linear transformation matrix is further employed to extract the classification-oriented features. With an Euclidean distance based classifier, each nonoverlapping window of the fabric image is then assigned to its corresponding category. Minimization of the classification error is achieved by incorporating the design of the feature extractor with the design of the classifier based on Minimum Classification Error (MCE) training method. The proposed method has been evaluated on the classification of 329 defect samples containing nine classes of fabric defects, and 328 nondefect samples, where 93.1% classification accuracy has been achieved.
机译:通过将基于小波帧的特征提取器的设计与基于欧氏距离的分类器的设计相结合,提出了一种新的织物疵点分类方法。小波帧分解的输出处的通道差异用于表征织物图像的每个不重叠窗口。还使用使用线性变换矩阵的特征提取器来提取面向分类的特征。使用基于欧几里得距离的分类器,然后将织物图像的每个不重叠窗口分配给其相应的类别。通过将特征提取器的设计与基于最小分类误差(MCE)训练方法的分类器的设计相结合,可以实现分类误差的最小化。该方法对329种包含9类织物缺陷的缺陷样品和328种无缺陷样品的分类进行了评估,分类精度达到93.1%。

著录项

  • 作者

    Yang X; Pang G; Yung N;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号