首页> 外文OA文献 >Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis
【2h】

Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis

机译:循环前缀mImO OFDm系统的鲁棒子空间盲信道估计:算法,可识别性和性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel subspace (SS) based blind channel estimation method for multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed in this work. With an appropriate re-modulation on the received signal blocks, the SS method can be effectively applied to the cyclic prefix (CP) based MIMO-OFDM system when the number of the receive antennas is no less than the number of transmit antennas. These features show great compatibility with the coming fourth generation (4G) wireless communication standards as well as most existing single-input single-output (SISO) OFDM standards, thus allow the proposed algorithm to be conveniently integrated into practical applications. Compared with the traditional SS method, the proposed algorithm exhibits many advantages such as robustness to channel order overestimation, capability of guaranteeing the channel identifiability etc. Analytical expressions for the mean-square error (MSE) and the approximated Cramér-Rao bound (ACRB) of the proposed algorithm are derived in closed forms. Various numerical examples are conducted to corroborate the proposed studies. © 2008 IEEE.
机译:这项工作提出了一种新的基于子空间(SS)的多输入,多输出(MIMO)正交频分复用(OFDM)系统的盲信道估计方法。通过对接收信号块进行适当的重新调制,当接收天线的数量不少于发射天线的数量时,SS方法可以有效地应用于基于循环前缀(CP)的MIMO-OFDM系统。这些功能与即将到来的第四代(4G)无线通信标准以及大多数现有的单输入单输出(SISO)OFDM标准具有很好的兼容性,因此使所提出的算法可以方便地集成到实际应用中。与传统的SS方法相比,该算法具有信道高估的鲁棒性,保证信道可识别性等优点。均方误差(MSE)和近似Cramér-Rao界(ACRB)的解析表达式所提出算法的算法以封闭形式导出。进行了各种数值算例以证实所提出的研究。 ©2008 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号