首页> 外文OA文献 >Electroosmotic Flow of Viscoplastic Fluids Through a Slit Microchannel
【2h】

Electroosmotic Flow of Viscoplastic Fluids Through a Slit Microchannel

机译:粘弹性流体通过狭缝微通道的电渗流

摘要

Abstract: In absence of external applied pressure, the hydrodynamically fully-developed electroosmotic flow (EOF) of non-Newtonian fluids in a slit microchannel is analytically studied. The Casson, Bingham and Herschel-Bulkley models are adopted to describe the non-Newtonian fluids. These non-Newtonian fluid models, known as viscoplastic models, are characterized by the existence of a yield stress. A flow domain needs to be divided into regions where the stress is smaller or larger in magnitude than the yield stress: known as the unsheared region with a plug flow, and the sheared region, respectively. With the rapid development of Micro-Electro-Mechanical Systems (MEMS) fabrication technology, many micro devices are often used involving viscoplastic materials, such as slurries, pastes, bloods, and suspensions etc. The flow of these viscoplastic materials in microchannels, however, has received less attention than they deserve. The present study aims to study EOF of these yield-stress materials. Analytical and numerical solutions are developed for the velocity profile under the condition of a uniform zeta potential of arbitrary values on the channel walls. The objective is to investigate the effect of yield stress on the velocity distribution, by comparing the plug flow velocity of these viscoplastic models with their counterparts with zero yield stress. The results show that no matter which model is employed, the plug flow always dominates the flow domain. Also, the plug flow velocity can be decreased to a different degree by the yield stress, depending on the viscoplastic materials. Acknowledgements This work was financially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through projects HKU 715609E and HKU 715510E.
机译:摘要:在没有外部施加压力的情况下,对狭缝微通道中非牛顿流体的流体动力学充分发展的电渗流(EOF)进行了分析研究。采用Casson,Bingham和Herschel-Bulkley模型来描述非牛顿流体。这些非牛顿流体模型(称为粘塑性模型)的特征在于存在屈服应力。需要将流域划分为应力大小小于或大于屈服应力的区域:分别称为具有塞流的非剪切区域和剪切区域。随着微机电系统(MEMS)制造技术的飞速发展,经常使用许多涉及粘塑性材料的微型设备,例如浆液,浆糊,血液和悬浮液等。但是,这些粘塑性材料在微通道中的流动,受到的关注比他们应得的少。本研究旨在研究这些屈服应力材料的EOF。在通道壁上具有任意值的均匀zeta电位的条件下,针对速度分布图开发了解析和数值解。目的是通过比较这些粘塑性模型与零屈服应力模型的塞流流速,来研究屈服应力对速度分布的影响。结果表明,无论采用哪种模型,塞流始终在流域中占主导地位。而且,取决于粘塑性材料,可以通过屈服应力将活塞流速降低到不同程度。致谢这项工作在中国香港特别行政区研究资助局的资助下,通过项目HKU 715609E和HKU 715510E得到了资助。

著录项

  • 作者

    Ng CO; Qi C;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号